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ON A COMPOSITE FUNCTIONAL EQUATION RELATED TO

THE GOLAB-SCHINZEL EQUATION

Madjid Eshaghi Gordji, Themistocles M. Rassias, Mohamed Tial,

and Driss Zeglami

Abstract. Let X be a vector space over a field K of real or complex
numbers and k ∈ N. We prove the superstability of the following gener-
alized Golab–Schinzel type equation

f(x1 +

p
∑

i=2

xif(x1)
kf(x2)

k · · · f(xi−1)
k) =

p
∏

i=1

f(xi), x1, x2, . . . , xp ∈ X,

where f : X → K is an unknown function which is hemicontinuous at the
origin.

1. Introduction and preliminaries

Let X be a vector space over a field K of real or complex numbers. The
Golab–Schinzel equation

(1.1) f(x+ f(x)y) = f(x)f(y) for x, y ∈ X,

and its generalization

(1.2) f(x+ f(x)ky) = λf(x)f(y) for x, y ∈ X,

where k ∈ N, λ ∈ K \ {0} are fixed and f : X → K is an unknown function,
are intensively studied in the last half-century. The solutions of (1.1) and
(1.2) have been investigated under various regularity assumptions, e.g., in [1],
[4, 5, 6, 7, 8, 9, 10] and [14, 23]. For more details concerning (1.1) and (1.2), its
applications and further generalizations we refer the reader to a survey paper
[10] (see also [6, 7, 8, 9, 10, 11, 12, 13, 14] and [25, 26, 27]).

The stability problem for (1.1) and (1.2) has been considered in [17, 18, 19,
20, 21]. It has been proved in [19] that for every k ∈ N, Eq. (1.2) is superstable
in the class of functions f : X → K continuous at 0 on rays, i.e., every such
function satisfying the inequality

∣

∣f(x+ f(x)ky)− λf(x)f(y)
∣

∣ ≤ ε for x, y ∈ X,
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where ε is a fixed positive real number, either is bounded or satisfies (1.2). The
first results of that kind have been studied in [3] for the exponential equation,
in [2] for the cosine equation on an abelian group and in [30, 31, 32, 33, 34]
for trigonmetric functional equations on any group. For further information
regarding superstability of functional equations we refer to [24]. Recently in
[15], it has been proved that the functional equation

f(x+ f(x)ky + f(x)kf(y)kz) = f(x)f(y)f(z), x, y, z ∈ X,

is superstable. Let p ∈ N such that p ≥ 2 and given a function f : X → K, we
will denote its difference by an operator Df : Xp → K as

Df(x1, x2, . . . , xp) =

∣

∣

∣

∣

∣

f(x1 +

p
∑

i=2

xif(x1)
kf(x2)

k · · · f(xi−1)
k)−

p
∏

i=1

f(xi)

∣

∣

∣

∣

∣

for all x1, x2, . . . , xp ∈ X .
In the present paper, we deal with the superstability problem for the gener-

alized Golab–Schinzel type equation

(1.3) f(x1+

p
∑

i=2

xif(x1)
kf(x2)

k · · · f(xi−1)
k)=

p
∏

i=1

f(xi) for x1, x2, . . . , xp∈X,

where f is defined on a linear space X over the field K of real or complex
numbers and takes its values in K, namely, we investigate the condition

Df(x1, xn, . . . , xp) ≤ ϕ(x2, x3, . . . , xp), x1, x2, . . . , xp ∈ X.

As consequences, we give some applications.
In what follows N and R stand for the sets of all positive integers and real

numbers, respectively. X is a vector space over a field K of real or complex

numbers and p and k are nonnegative integer constants such that p ≥ 2.

2. Auxiliary results

To formulate the main result of the paper, we need the following definition
(cf. [19]).

Definition 1. A function f : X → K is hemicontinuous at the origin provided,
for every x ∈ X , the function fx : K → K, given by

fx(t) = f(tx)

for t ∈ K is continuous at 0.

The functional equation (1.3) is connected with the equation (1.2) as follows:

Lemma 1. A function f : X → K satisfies the functional equation

(2.1) f(x1 +

p
∑

i=2

xif(x1)
kf(x2)

k · · · f(xi−1)
k) =

p
∏

i=1

f(xi)
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for all x1, x2, . . . , xp ∈ X if and only if f satisfies the functional equation

(2.2) f(x+ f(x)ky) = f(0)p−2f(x)f(y)

for all x, y ∈ X.

Proof. Setting in (2.1) x3 = x4 = · · · = xp = 0, we clearly see that, (2.1)
implies (2.2). Thus let us assume that f satisfies (2.2). Putting x = y = 0 in
the identity (2.2) we obtain that

f(0)p = f(0).

Then we get f(0)p−1 = 1 if f 6= 0, and we have

f(x1 +

p
∑

i=2

xif(x1)
kf(x2)

k · · · f(xi−1)
k)

= f(x1 + f(x1)
k

{

x2 +

p
∑

i=3

xif(x2)
k · · · f(xi−1)

k

}

= f(0)p−2f(x1)f(x2 +

p
∑

i=3

xif(x2)
k · · · f(xi−1)

k)

for all x1, x2, . . . , xp ∈ X . By induction, we get

f(x1 +

p+1
∑

i=2

xif(x1)
kf(x2)

k · · · f(xi−1)
k)

= f(0)p−2f(x1)
kf(0)p−2f(x2)

kf(x3 +

p
∑

i=4

xif(x2) · · · f(xi−1)
k).

= (f(0)p−2)p−1

p
∏

i=1

f(xi)

=

p
∏

i=1

f(xi)

for all x1, x2, . . . , xp ∈ X . �

Remark 1. A function f : X → K with f(0) ≥ 0 satisfies the functional
equation (2.1) if and only if f satisfies the functional equation:

f(x+ f(x)ky) = f(x)f(y) for x, y ∈ X.

Lemma 2. Let f : X → K be a bounded function satisfying

(2.3)

∣

∣

∣

∣

∣

f(x1 +

p
∑

i=2

xif(x1)
kf(x2)

k · · · f(xi−1)
k)−

p
∏

i=1

f(xi)

∣

∣

∣

∣

∣

≤ ε

for all x1, x2, . . . , xp ∈ X. Then

|f(x)| ≤
1 +

√
1 + 4ε

2
for all x ∈ X.
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Proof. Assume that f is a bounded function satisfying the inequality (2.3) and
let M = sup |f |. Then we get, for all x1, x2, . . . , xp ∈ X , that

∣

∣

∣

∣

∣

p
∏

i=1

f(xi)

∣

∣

∣

∣

∣

≤ ε+M,

from which we obtain that Mp −M − ε ≤ 0. If M ≥ 1, then

M2 −M − ε ≤ Mp −M − ε ≤ 0.

This inequality shows that

M ≤
1 +

√
1 + 4ε

2
,

and so

|f(x)| ≤ Max(1,
1 +

√
1 + 4ε

2
) =

1 +
√
1 + 4ε

2
for all x ∈ X. �

3. Technical lemmas

We assume throughout the rest of this section that f is an unbounded func-
tion satisfying (2.3). Let a1, a2, . . . , ap−2 be fixed elements of X such that
f(ai) 6= 0 for all i ∈ {1, 2, . . . , p− 2} and (yn : n ∈ N) be a sequence of
elements of X\f−1(0) such that

lim
n−→+∞

|f(yn)| = +∞.

We will now introduce some notations that we will use throughout the rest
of the paper.

Definition 2. For all x1, x2, . . . , xp in X and n ∈ N put

B(x1, x2, . . . , xp) = x1 +

p
∑

i=2

xif(x1)
kf(x2)

k · · · f(xi−1)
k,

and define the sequences of functions dn, αn and cn by

dn(x1, x2, . . . , xp) = B(yn, a1, a2, . . . , ap−2, B(x1, x2, . . . , xp)),

αn(x1) = B(yn, a1, a2, . . . , ap−2, x1),

cn(x1, x2, . . . , xp) = B(αn(x1), x2, x3, . . . , xp).

Lemma 3. Let f be an unbounded function satisfying (2.3). Then, for all

x1, x2, . . . , xp ∈ X, we have

lim
n→+∞

f(dn(x1,x2,...,xp))
f(yn)

= f(a1)f(a2) · · · f(ap−2)f(B(x1, x2, . . . , xp)),(3.1)

lim
n→+∞

f(αn(x1))
f(yn)

= f(a1)f(a2) · · · f(ap−2)f(x1).(3.2)
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For all x1 ∈ X\f−1(0) and x2, . . . , xp ∈ X, we have

lim
n→+∞

f(cn(x1,x2,...,xp))
f(αn(x1))

= f(x2)f(x3) · · · f(xp),

(3.3)

lim
n→+∞

f(cn(x1,x2,...,xp))
f(yn)

= f(a1)f(a2) · · · f(ap−2)f(x1)f(x2)f(x3) · · · f(xp),

(3.4)

and we have cn(x1, x2, . . . , xp) ∈ X\f−1(0) for all x1, x2, . . . , xp ∈ X\f−1(0).

Proof. For every x1, x2, . . . , xp in X and n ∈ N, using (2.3) to get

|f(dn(x1, x2, . . . , xp))− f(yn)f(a1)f(a2) · · · f(ap−2)f(B(x1, x2, . . . , xp))|

≤ ǫ.

Dividing the above inequality by f(yn), then we get (3.1). Putting x2 = x3 =
· · · = xp = 0 in the identity (3.1) to obtain (3.2). Hence

lim
n−→+∞

|f(αn(x1))| = +∞

for all x1 ∈ X\f−1(0). By virtue of (2.3), we have
∣

∣

∣

∣

∣

f(cn(x1, x2, . . . , xp)) − f(αn(x1)

p
∏

i=2

f(xi)

∣

∣

∣

∣

∣

≤ ǫ.

Dividing by f(αn) and passing to the limit as n → +∞ with the use of
limn→+∞ |f(αn(x1))| = +∞, we obtain (3.3). Thus, taking into account (3.2)
and (3.3), we get (3.4) from which we conclude that, for all x1, x2, . . . , xp ∈
X\f−1(0), we have

cn(x1, x2, . . . , xp) ∈ X\f−1(0). �

Definition 3. We define

(3.5) ln(x1, x2, . . . , xp) =
dn(x1, x2, . . . , xp)− cn(x1, x2, . . . , xp)

f(cn(x1, x2, . . . , xp))k

for all x1, x2, . . . , xp ∈ X\f−1(0).

Lemma 4. We have

i)

(3.6)
dn(x1, x2, . . . , xp) = cn(x1, x2, . . . , xp)

+ ln(x1, x2, . . . , xp)f(cn(x1, x2, . . . , xp))
k,

ii)

(3.7) lim
n→+∞

ln(x1, x2, . . . , xp) = 0

for all x1, x2, . . . , xp ∈ X\f−1(0).
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Proof. i) Equality (3.6) is an immediate consequence of (3.5).
ii) For every x1, x2, . . . , xp ∈ X\f−1(0), we have

ln(x1, x2, . . . , xp)

=
f(yn)

k

f(cn(x1, . . . , xp))k

(

(f(a1)f(a2) · · · f(ap−2)f(x1))
k −

f(αn(x1))
k

f(yn)k

)

×B(x2, x3, . . . , xp).

By virtue of (3.2) and (3.4), we obtain

lim
n→+∞

ln(x1, x2, . . . , xp) = 0.

Thus, as f is hemicontinuous at the origin, we get

lim
n→+∞

z2,n(x1, x2, . . . , xp) = 0,

and inductively, since f(0) 6= 0, we obtain that

(3.8) lim
n→+∞

zi,n(x1, x2, . . . , xp) = 0 for all 2 ≤ i ≤ p,

as desired. �

Definition 4. We define the sequences of functions z1,n, z2,n, . . . , zp,n by






















z1,n(x1, x2, . . . , xp) = cn(x1, x2, . . . , xp),

z2,n(x1, x2, . . . , xp) =
1

p−1 ln(x1, x2, . . . , xp),

zi,n(x1, x2, . . . , xp) =
1

p−1
ln(x1,...,xp)

(f(z2,n(x1,...,xp))f(z3,n(x1,...,xp))···f(zi−1,n(x1,...,xp)))k
,

i ≥ 3,

for all x1, x2, . . . , xp ∈ X \ f−1(0).

Remark 2. The sequences of functions zi,n, i ∈ {1, 2, . . . , p} are well defined.
Moreover, as f is hemicontinuous at the origin, we get

lim
n→+∞

f(zi,n(x1, x2, . . . , xp)) = f(0) for all 2 ≤ i ≤ p.

Then, for all i ∈ {1, 2, . . . , p}, from a certain positive integer Ni, we shall have
f(zi,n(x1, x2, . . . , xp)) 6= 0. For n ∈ N such that n ≥ N := maxi∈{1,2,...,p}(Ni)
we get that f(zi,n(x1, . . . , xp)) 6= 0 for all i ∈ {1, 2, . . . , p}.

Lemma 5. For every x1, x2, . . . , xp ∈ X\f−1(0) we have

i)

lim
n−→+∞

zi,n(x1, x2, . . . , xp) = 0 for all 1 ≤ i ≤ p,

ii)

B(z1,n(x1, x2, . . . , xp), z2,n(x1, x2, . . . , xp), . . . , zp,n(x1, x2, . . . , xp))

= cn(x1, x2, . . . , xp) + ln(x1, x2, . . . , xp)f(cn(x1, x2, . . . , xp))
k.
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Proof. i) Using (3.7), we have limn→+∞ z1,n(x1, x2, . . . , xp) = 0. Also, f is
hemicontinuous at the origin, then we get

lim
n→+∞

z2,n(x1, x2, . . . , xp) = 0,

since f(0) 6= 0, we obtain by induction, limn→+∞ zi,n(x1, x2, . . . , xp) = 0 for
all 2 ≤ i ≤ p and x1, x2, . . . , xp ∈ X\f−1(0).

ii) We have

z1,n(x1, x2, . . . , xp)

+

p
∑

i=2

zi,n(x1, . . . , xp)(f(z1,n(x1, . . . , xp))f(z2,n(x1, . . . , xp))

· · · f(zi−1,n(x1, . . . , xp)))
k

= cn(x1, x2, . . . , xp) +

p
∑

i=2

1

p− 1
ln(x1, x2, . . . , xp)f(z1,n(x1, x2, . . . , xp))

k

= cn(x1, x2, . . . , xp) + ln(x1, x2, . . . , xp)f(z1,n(x1, x2, . . . , xp))
k

= cn(x1, x2, . . . , xp) + ln(x1, x2, . . . , xp)f(cn(x1, x2, . . . , xp))
k

= dn(x1, x2, . . . , xp)

for all x1, x2, . . . , xp ∈ X\f−1(0), as desired. �

4. Superstability of (1.3)

In this section we investigate the superstability of the functional equation
(1.3).

Theorem 1. Assume that f : X → K and ϕ : Xp−1 → R
+ are two hemicon-

tinuous functions at the origin satisfying

(4.1) Df(x1, x2, . . . , xp) ≤ ϕ(x2, x3, . . . , xp), x1, x2, . . . , xp ∈ X.

Then either f is bounded or it satisfies the functional equation (1.3).

Proof. Suppose that f is unbounded. Letting x2 = x3 = · · · = xp = 0 in (4.1),
we obtain

f(x1)(f(0)
p−1 − 1) ≤ ϕ(0, 0, . . . , 0),

and so f(0)p−1 = 1 since f is unbounded. Let a1, a2, . . . , ap−2 be fixed such
that f(ai) 6= 0 for all i ∈ {1, 2, . . . , p− 2} and (yn : n ∈ N) be a sequence of
elements of X\f−1(0) such that

lim
n→+∞

|f(yn)| = +∞.

Replacing x1, x2, . . . , xp in (4.1) by z1,n(x1, x2, . . . , xp), z2,n(x1, x2, . . . , xp), . . . ,
zp,n(x1, x2, . . . , xp), respectively, using (3.6) and Lemma 5(ii), we get

∣

∣

∣

∣

∣

f(dn(x1, x2, . . . , xp))−

p
∏

i=1

f(zi(x1, x2, . . . , xp))

∣

∣

∣

∣

∣



394 M. ESHAGHI GORDJI, TH. M. RASSIAS, M. TIAL, AND D. ZEGLAMI

≤ ϕ(z2,n(x1, x2, . . . , xp), . . . , zp,n(x1, x2, . . . , xp)).

Moreover, in view of Lemma 5(i), we have

(4.2) lim
n→+∞

zi,n(x1, x2, . . . , xp) = 0 for all 2 ≤ i ≤ p,

for all x1, x2, . . . , xp ∈ X\f−1(0). This yields, since ϕ is hemicontinuous at the
origin, that

lim
n→+∞

ϕ(z2,n(x1, x2, . . . , xp), . . . , zp,n(x1, x2, . . . , xp)) = ϕ(0, 0, . . . , 0).

So, we get

lim
n→+∞

f(dn(x1, x2, . . . , xp))−
p
∏

i=1

f(zi,n(x1, x2, . . . , xp))

f(yn)

= lim
n→+∞

f(dn(x1, x2, . . . , xp))− f(cn(x1, x2, . . . , xp))
p
∏

i=2

f(zi(x1, x2, . . . , xp))

f(yn)

= 0.

Therefore, taking into account (3.1) and (3.4), we have

f(a1)f(a2) · · · f(ap−2)f(B(x1, x2, . . . , xp))

(4.3)

= f(a1)f(a2) · · · f(ap−2)f(x1)f(x2)f(x3) · · · f(xp)
p
∏

i=2

lim
n→+∞

f(zi(x1, x2, . . . , xp))

= f(a1)f(a2) · · · f(ap−2)f(x1)f(x2)f(x3) · · · f(xp)f
n−1(0)

for all x1, x2, . . . , xp ∈ X\f−1(0). Using (4.3) and the fact that fn−1(0) = 1,
we get

f(B(x1, x2, . . . , xp)) = f(x1)f(x2)f(x3) · · · f(xp)

for all x1, x2, . . . , xp ∈ X\f−1(0). From which we deduce that

f(αn(x1)) = f(yn)f(a1)f(a2) · · · f(ap−2)f(x1)

for all x1 ∈ X\f−1(0) and n ∈ N. Thus, we obtain

cn(x1, x2, . . . , xp)

= B(αn(x1), x2, x3, . . . , xp)

= αn(x1) +

p
∑

i=2

xi(f(αn(x1))f(x2) · · · f(xi−1))
k

= αn(x1) +

p
∑

i=2

xi(f(yn)f(a1)f(a2) · · · f(ap−2)f(x1)f(x2) · · · f(xi−1))
k

= B(yn, a1, . . . , ap−2, x1)
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+ (f(yn)f(a1)f(a2) · · · f(ap−2))
k

p
∑

i=2

xi(f(x1) · · · f(xi−1))
k

= yn +

p−2
∑

i=1

ai(f(yn)f(a1) · · · f(ai−1))
k + x1(f(yn)f(a1) · · · f(ap−2))

k

+ (f(yn)f(a1)f(a2) · · · f(ap−2))
k

p
∑

i=2

xi(f(x1)f(x2) · · · f(xi−1))
k

= yn +

p−2
∑

i=1

ai(f(yn)f(a1) · · · f(ai−1))
k

+B(x1, x2, . . . , xp)(f(yn)f(a1) · · · f(ap−2))
k

= B(yn, a1, a2, . . . , ap−2, B(x1, x2, . . . , xp))

for all x1 ∈ X\f−1(0) and all x2, . . . , xp ∈ X . It follows that

cn(x1, x2, . . . , xp) = dn(x1, x2, . . . , xp)

for all x1 ∈ X\f−1(0) and x2, . . . , xp ∈ X . Taking into account (3.1) and (3.4),
we get

f(B(x1, x2, . . . , xp)) = f(x1)f(x2)f(x3) · · · f(xp)

for all x1 ∈ X\f−1(0) and x2, . . . , xp ∈ X since in the case when f(x1) = 0,
(1.3) trivially holds. Therefore the proof of the theorem is complete. �

Corollary 1. Let ε > 0 be given. Assume that a function f : X → K is a

hemicontinuous function at the origin satisfying

Df(x1, xn, . . . , xp) ≤ ε

for all x1, x2, . . . , xp ∈ X. Then either

|f(x)| ≤
1 +

√
1 + 4ε

2
for all x ∈ X

or f satisfies the functional equation (1.3).

Proof. We put ϕ = ε in Theorem 1, and then the result follows by Lemma
2. �

As a consequences of Theorem 1, we have the following results.

Corollary 2. Assume that f : X → K and ϕ : Xp−1 → R
+ are two hemicon-

tinuous functions at the origin satisfying

Df(x1, x2, . . . , xp) ≤ ϕ(x2) or respectively ϕ(x3) or · · · or ϕ(xp)

for all x1, x2, . . . , xp ∈ X. Then either f is bounded or it satisfies the functional

equation (1.3).
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Corollary 3. Let f : X → K and ϕ : X → R
+ be two hemicontinuous

functions at the origin satisfying

(4.4) |f(x+ f(x)y)− f(x)f(y)| ≤ ϕ(y), x, y ∈ X.

Then either f is bounded or

(4.5) f(x+ f(x)y) = f(x)f(y)

for all x, y ∈ X.

Corollary 4 ([15]). Assume that f : X → K and ϕ : X → R
+ are two

hemicontinuous functions at the origin satisfying
∣

∣f(x+ f(x)ky)− f(x)f(y)
∣

∣ ≤ ϕ(y), x, y ∈ X.

Then either f is bounded or f(x+ f(x)ky) = f(x)f(y) for all x, y ∈ X.

Corollary 5 ([15]). Let f : X → K and ϕ : X ×X → R
+ be two hemicontin-

uous functions at the origin satisfying
∣

∣f(x+ f(x)ky + f(x)kf(y)kz)− f(x)f(y)f(z)
∣

∣ ≤ ϕ(y, z), x, y, z ∈ X.

Then either f is bounded or f(x + f(x)ky + f(x)kf(y)kz) = f(x)f(y)f(z) for

all x, y, z ∈ X.

From Theorem 1, we can obtain the following three corollaries with partic-
ular cases of ϕ as natural results.

Corollary 6. Let α1, α2, . . . , αp−1, θ be nonnegative real numbers. Assume

that f : X → K is a hemicontinuous function at the origin satisfying

Df(x1, x2, . . . , xp) ≤ θ(‖x2‖
α1 + ‖x3‖

α2 + · · ·+ ‖xp‖
αp−1), x1, x2, . . . , xp ∈ X.

Then either f is bounded or it satisfies the functional equation (1.3).

Corollary 7. Let α, θ be nonnegative real numbers. Let f : X → K be a

hemicontinuous function at the origin satisfying
∣

∣f(x+ f(x)ky)− f(x)f(y)
∣

∣ ≤ θ ‖y‖
α
, x, y ∈ X.

Then either f is bounded or f(x+ f(x)ky) = f(x)f(y) for all x, y ∈ X.

Corollary 8. Let α, β, θ be nonnegative real numbers. Let f : X → K be a

hemicontinuous function at the origin satisfying
∣

∣f(x+ f(x)ky + f(x)kf(y)kz)− f(x)f(y)f(z)
∣

∣ ≤ θ(‖y‖α + ‖z‖β), x, y, z ∈ X.

Then either f is bounded or f(x + f(x)ky + f(x)kf(y)kz) = f(x)f(y)f(z) for

all x, y, z ∈ X.

Remark 3. Let f : R → R be a function with f(x) = 3x + 4 for all x ∈ R.
Then |f(x+ f(x)y)− f(x)f(y)| = |9x+ 12|, but f is unbounded and f does
not satisfy the equation (4.5). This shows that the condition (4.4) is essential
in Corollary 3. Therefore the condition (4.1) is essential in Theorem 1.
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