ON A COMPOSITE FUNCTIONAL EQUATION RELATED TO THE GOLAB-SCHINZEL EQUATION

Madjid Eshaghi Gordjı, Themistocles M. Rassias, Mohamed Tial, and Driss Zeglami

Abstract

Let X be a vector space over a field K of real or complex numbers and $k \in \mathbb{N}$. We prove the superstability of the following generalized Golab-Schinzel type equation $f\left(x_{1}+\sum_{i=2}^{p} x_{i} f\left(x_{1}\right)^{k} f\left(x_{2}\right)^{k} \cdots f\left(x_{i-1}\right)^{k}\right)=\prod_{i=1}^{p} f\left(x_{i}\right), x_{1}, x_{2}, \ldots, x_{p} \in X$, where $f: X \rightarrow K$ is an unknown function which is hemicontinuous at the origin.

1. Introduction and preliminaries

Let X be a vector space over a field K of real or complex numbers. The Golab-Schinzel equation

$$
\begin{equation*}
f(x+f(x) y)=f(x) f(y) \text { for } x, y \in X \tag{1.1}
\end{equation*}
$$

and its generalization

$$
\begin{equation*}
f\left(x+f(x)^{k} y\right)=\lambda f(x) f(y) \text { for } x, y \in X \tag{1.2}
\end{equation*}
$$

where $k \in \mathbb{N}, \lambda \in K \backslash\{0\}$ are fixed and $f: X \rightarrow K$ is an unknown function, are intensively studied in the last half-century. The solutions of (1.1) and (1.2) have been investigated under various regularity assumptions, e.g., in [1], $[4,5,6,7,8,9,10]$ and $[14,23]$. For more details concerning (1.1) and (1.2), its applications and further generalizations we refer the reader to a survey paper [10] (see also $[6,7,8,9,10,11,12,13,14]$ and $[25,26,27]$).

The stability problem for (1.1) and (1.2) has been considered in [17, 18, 19, $20,21]$. It has been proved in [19] that for every $k \in \mathbb{N}$, Eq. (1.2) is superstable in the class of functions $f: X \rightarrow K$ continuous at 0 on rays, i.e., every such function satisfying the inequality

$$
\left|f\left(x+f(x)^{k} y\right)-\lambda f(x) f(y)\right| \leq \varepsilon \text { for } x, y \in X,
$$

Received July 23, 2014; Revised January 19, 2015.
2010 Mathematics Subject Classification. Primary 39B72, 39B22, 39B32.
Key words and phrases. Hyers-Ulam stability, Golab-Schinzel equation, superstability.
where ε is a fixed positive real number, either is bounded or satisfies (1.2). The first results of that kind have been studied in [3] for the exponential equation, in [2] for the cosine equation on an abelian group and in [30, 31, 32, 33, 34] for trigonmetric functional equations on any group. For further information regarding superstability of functional equations we refer to [24]. Recently in [15], it has been proved that the functional equation

$$
f\left(x+f(x)^{k} y+f(x)^{k} f(y)^{k} z\right)=f(x) f(y) f(z), \quad x, y, z \in X
$$

is superstable. Let $p \in \mathbb{N}$ such that $p \geq 2$ and given a function $f: X \rightarrow K$, we will denote its difference by an operator $D f: X^{p} \rightarrow K$ as

$$
D f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\left|f\left(x_{1}+\sum_{i=2}^{p} x_{i} f\left(x_{1}\right)^{k} f\left(x_{2}\right)^{k} \cdots f\left(x_{i-1}\right)^{k}\right)-\prod_{i=1}^{p} f\left(x_{i}\right)\right|
$$

for all $x_{1}, x_{2}, \ldots, x_{p} \in X$.
In the present paper, we deal with the superstability problem for the generalized Golab-Schinzel type equation

$$
\begin{equation*}
f\left(x_{1}+\sum_{i=2}^{p} x_{i} f\left(x_{1}\right)^{k} f\left(x_{2}\right)^{k} \cdots f\left(x_{i-1}\right)^{k}\right)=\prod_{i=1}^{p} f\left(x_{i}\right) \text { for } x_{1}, x_{2}, \ldots, x_{p} \in X, \tag{1.3}
\end{equation*}
$$

where f is defined on a linear space X over the field K of real or complex numbers and takes its values in K, namely, we investigate the condition

$$
D f\left(x_{1}, x_{n}, \ldots, x_{p}\right) \leq \varphi\left(x_{2}, x_{3}, \ldots, x_{p}\right), \quad x_{1}, x_{2}, \ldots, x_{p} \in X
$$

As consequences, we give some applications.
In what follows \mathbb{N} and \mathbb{R} stand for the sets of all positive integers and real numbers, respectively. X is a vector space over a field K of real or complex numbers and p and k are nonnegative integer constants such that $p \geq 2$.

2. Auxiliary results

To formulate the main result of the paper, we need the following definition (cf. [19]).

Definition 1. A function $f: X \rightarrow K$ is hemicontinuous at the origin provided, for every $x \in X$, the function $f_{x}: K \rightarrow K$, given by

$$
f_{x}(t)=f(t x)
$$

for $t \in K$ is continuous at 0 .
The functional equation (1.3) is connected with the equation (1.2) as follows:
Lemma 1. A function $f: X \rightarrow K$ satisfies the functional equation

$$
\begin{equation*}
f\left(x_{1}+\sum_{i=2}^{p} x_{i} f\left(x_{1}\right)^{k} f\left(x_{2}\right)^{k} \cdots f\left(x_{i-1}\right)^{k}\right)=\prod_{i=1}^{p} f\left(x_{i}\right) \tag{2.1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{p} \in X$ if and only if f satisfies the functional equation

$$
\begin{equation*}
f\left(x+f(x)^{k} y\right)=f(0)^{p-2} f(x) f(y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$.
Proof. Setting in (2.1) $x_{3}=x_{4}=\cdots=x_{p}=0$, we clearly see that, (2.1) implies (2.2). Thus let us assume that f satisfies (2.2). Putting $x=y=0$ in the identity (2.2) we obtain that

$$
f(0)^{p}=f(0)
$$

Then we get $f(0)^{p-1}=1$ if $f \neq 0$, and we have

$$
\begin{aligned}
& f\left(x_{1}+\sum_{i=2}^{p} x_{i} f\left(x_{1}\right)^{k} f\left(x_{2}\right)^{k} \cdots f\left(x_{i-1}\right)^{k}\right) \\
= & f\left(x_{1}+f\left(x_{1}\right)^{k}\left\{x_{2}+\sum_{i=3}^{p} x_{i} f\left(x_{2}\right)^{k} \cdots f\left(x_{i-1}\right)^{k}\right\}\right. \\
= & f(0)^{p-2} f\left(x_{1}\right) f\left(x_{2}+\sum_{i=3}^{p} x_{i} f\left(x_{2}\right)^{k} \cdots f\left(x_{i-1}\right)^{k}\right)
\end{aligned}
$$

for all $x_{1}, x_{2}, \ldots, x_{p} \in X$. By induction, we get

$$
\begin{aligned}
& f\left(x_{1}+\sum_{i=2}^{p+1} x_{i} f\left(x_{1}\right)^{k} f\left(x_{2}\right)^{k} \cdots f\left(x_{i-1}\right)^{k}\right) \\
= & f(0)^{p-2} f\left(x_{1}\right)^{k} f(0)^{p-2} f\left(x_{2}\right)^{k} f\left(x_{3}+\sum_{i=4}^{p} x_{i} f\left(x_{2}\right) \cdots f\left(x_{i-1}\right)^{k}\right) \\
= & \left(f(0)^{p-2}\right)^{p-1} \prod_{i=1}^{p} f\left(x_{i}\right) \\
= & \prod_{i=1}^{p} f\left(x_{i}\right)
\end{aligned}
$$

for all $x_{1}, x_{2}, \ldots, x_{p} \in X$.
Remark 1. A function $f: X \rightarrow K$ with $f(0) \geq 0$ satisfies the functional equation (2.1) if and only if f satisfies the functional equation:

$$
f\left(x+f(x)^{k} y\right)=f(x) f(y) \quad \text { for } \quad x, y \in X
$$

Lemma 2. Let $f: X \rightarrow K$ be a bounded function satisfying

$$
\begin{equation*}
\left|f\left(x_{1}+\sum_{i=2}^{p} x_{i} f\left(x_{1}\right)^{k} f\left(x_{2}\right)^{k} \cdots f\left(x_{i-1}\right)^{k}\right)-\prod_{i=1}^{p} f\left(x_{i}\right)\right| \leq \varepsilon \tag{2.3}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{p} \in X$. Then

$$
|f(x)| \leq \frac{1+\sqrt{1+4 \varepsilon}}{2} \text { for all } x \in X
$$

Proof. Assume that f is a bounded function satisfying the inequality (2.3) and let $M=\sup |f|$. Then we get, for all $x_{1}, x_{2}, \ldots, x_{p} \in X$, that

$$
\left|\prod_{i=1}^{p} f\left(x_{i}\right)\right| \leq \varepsilon+M
$$

from which we obtain that $M^{p}-M-\varepsilon \leq 0$. If $M \geq 1$, then

$$
M^{2}-M-\varepsilon \leq M^{p}-M-\varepsilon \leq 0 .
$$

This inequality shows that

$$
M \leq \frac{1+\sqrt{1+4 \varepsilon}}{2}
$$

and so

$$
|f(x)| \leq \operatorname{Max}\left(1, \frac{1+\sqrt{1+4 \varepsilon}}{2}\right)=\frac{1+\sqrt{1+4 \varepsilon}}{2}
$$

for all $x \in X$.

3. Technical lemmas

We assume throughout the rest of this section that f is an unbounded function satisfying (2.3). Let $a_{1}, a_{2}, \ldots, a_{p-2}$ be fixed elements of X such that $f\left(a_{i}\right) \neq 0$ for all $i \in\{1,2, \ldots, p-2\}$ and ($y_{n}: n \in \mathbb{N}$) be a sequence of elements of $X \backslash f^{-1}(0)$ such that

$$
\lim _{n \longrightarrow+\infty}\left|f\left(y_{n}\right)\right|=+\infty
$$

We will now introduce some notations that we will use throughout the rest of the paper.

Definition 2. For all $x_{1}, x_{2}, \ldots, x_{p}$ in X and $n \in \mathbb{N}$ put

$$
B\left(x_{1}, x_{2}, \ldots, x_{p}\right)=x_{1}+\sum_{i=2}^{p} x_{i} f\left(x_{1}\right)^{k} f\left(x_{2}\right)^{k} \cdots f\left(x_{i-1}\right)^{k}
$$

and define the sequences of functions d_{n}, α_{n} and c_{n} by

$$
\begin{aligned}
d_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) & =B\left(y_{n}, a_{1}, a_{2}, \ldots, a_{p-2}, B\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right), \\
\alpha_{n}\left(x_{1}\right) & =B\left(y_{n}, a_{1}, a_{2}, \ldots, a_{p-2}, x_{1}\right), \\
c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) & =B\left(\alpha_{n}\left(x_{1}\right), x_{2}, x_{3}, \ldots, x_{p}\right) .
\end{aligned}
$$

Lemma 3. Let f be an unbounded function satisfying (2.3). Then, for all $x_{1}, x_{2}, \ldots, x_{p} \in X$, we have

$$
\begin{align*}
& \lim _{n \rightarrow+\infty} \frac{f\left(d_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)}{f\left(y_{n}\right)}=f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{p-2}\right) f\left(B\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right), \tag{3.1}\\
& \lim _{n \rightarrow+\infty} \frac{f\left(\alpha_{n}\left(x_{1}\right)\right)}{f\left(y_{n}\right)}=f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{p-2}\right) f\left(x_{1}\right) \tag{3.2}
\end{align*}
$$

For all $x_{1} \in X \backslash f^{-1}(0)$ and $x_{2}, \ldots, x_{p} \in X$, we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{f\left(c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)}{f\left(\alpha_{n}\left(x_{1}\right)\right)}=f\left(x_{2}\right) f\left(x_{3}\right) \cdots f\left(x_{p}\right) \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{f\left(c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)}{f\left(y_{n}\right)}=f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{p-2}\right) f\left(x_{1}\right) f\left(x_{2}\right) f\left(x_{3}\right) \cdots f\left(x_{p}\right), \tag{3.4}
\end{equation*}
$$

and we have $c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) \in X \backslash f^{-1}(0)$ for all $x_{1}, x_{2}, \ldots, x_{p} \in X \backslash f^{-1}(0)$.
Proof. For every $x_{1}, x_{2}, \ldots, x_{p}$ in X and $n \in \mathbb{N}$, using (2.3) to get

$$
\left|f\left(d_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)-f\left(y_{n}\right) f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{p-2}\right) f\left(B\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)\right|
$$

$$
\leq \epsilon
$$

Dividing the above inequality by $f\left(y_{n}\right)$, then we get (3.1). Putting $x_{2}=x_{3}=$ $\cdots=x_{p}=0$ in the identity (3.1) to obtain (3.2). Hence

$$
\lim _{n \longrightarrow+\infty}\left|f\left(\alpha_{n}\left(x_{1}\right)\right)\right|=+\infty
$$

for all $x_{1} \in X \backslash f^{-1}(0)$. By virtue of (2.3), we have

$$
\mid f\left(c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)-f\left(\alpha_{n}\left(x_{1}\right) \prod_{i=2}^{p} f\left(x_{i}\right) \mid \leq \epsilon\right.
$$

Dividing by $f\left(\alpha_{n}\right)$ and passing to the limit as $n \rightarrow+\infty$ with the use of $\lim _{n \rightarrow+\infty}\left|f\left(\alpha_{n}\left(x_{1}\right)\right)\right|=+\infty$, we obtain (3.3). Thus, taking into account (3.2) and (3.3), we get (3.4) from which we conclude that, for all $x_{1}, x_{2}, \ldots, x_{p} \in$ $X \backslash f^{-1}(0)$, we have

$$
c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) \in X \backslash f^{-1}(0)
$$

Definition 3. We define

$$
\begin{equation*}
l_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\frac{d_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)-c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)}{f\left(c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)^{k}} \tag{3.5}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{p} \in X \backslash f^{-1}(0)$.
Lemma 4. We have
i)

$$
\begin{align*}
d_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)= & c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) \\
& +l_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) f\left(c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)^{k} \tag{3.6}
\end{align*}
$$

ii)

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} l_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=0 \tag{3.7}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{p} \in X \backslash f^{-1}(0)$.

Proof. i) Equality (3.6) is an immediate consequence of (3.5).
ii) For every $x_{1}, x_{2}, \ldots, x_{p} \in X \backslash f^{-1}(0)$, we have

$$
\begin{aligned}
& l_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) \\
= & \frac{f\left(y_{n}\right)^{k}}{f\left(c_{n}\left(x_{1}, \ldots, x_{p}\right)\right)^{k}}\left(\left(f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{p-2}\right) f\left(x_{1}\right)\right)^{k}-\frac{f\left(\alpha_{n}\left(x_{1}\right)\right)^{k}}{f\left(y_{n}\right)^{k}}\right) \\
& \times B\left(x_{2}, x_{3}, \ldots, x_{p}\right) .
\end{aligned}
$$

By virtue of (3.2) and (3.4), we obtain

$$
\lim _{n \rightarrow+\infty} l_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=0
$$

Thus, as f is hemicontinuous at the origin, we get

$$
\lim _{n \rightarrow+\infty} z_{2, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=0
$$

and inductively, since $f(0) \neq 0$, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} z_{i, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=0 \text { for all } 2 \leq i \leq p \tag{3.8}
\end{equation*}
$$

as desired.
Definition 4. We define the sequences of functions $z_{1, n}, z_{2, n}, \ldots, z_{p, n}$ by

$$
\left\{\begin{aligned}
z_{1, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)= & c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right), \\
z_{2, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)= & \frac{1}{p-1} l_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right), \\
z_{i, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)= & \frac{1}{p-1} \frac{l_{n}\left(x_{1}, \ldots, x_{p}\right)}{\left(f\left(z_{2, n}\left(x_{1}, \ldots, x_{p}\right)\right) f\left(z_{3, n}\left(x_{1}, \ldots, x_{p}\right)\right) \cdots f\left(z_{i-1, n}\left(x_{1}, \ldots, x_{p}\right)\right)\right)^{k}}, \\
& i \geq 3,
\end{aligned}\right.
$$

for all $x_{1}, x_{2}, \ldots, x_{p} \in X \backslash f^{-1}(0)$.
Remark 2. The sequences of functions $z_{i, n}, i \in\{1,2, \ldots, p\}$ are well defined.
Moreover, as f is hemicontinuous at the origin, we get

$$
\lim _{n \rightarrow+\infty} f\left(z_{i, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)=f(0) \text { for all } 2 \leq i \leq p
$$

Then, for all $i \in\{1,2, \ldots, p\}$, from a certain positive integer N_{i}, we shall have $f\left(z_{i, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right) \neq 0$. For $n \in \mathbb{N}$ such that $n \geq N:=\max _{i \in\{1,2, \ldots, p\}}\left(N_{i}\right)$ we get that $f\left(z_{i, n}\left(x_{1}, \ldots, x_{p}\right)\right) \neq 0$ for all $i \in\{1,2, \ldots, p\}$.

Lemma 5. For every $x_{1}, x_{2}, \ldots, x_{p} \in X \backslash f^{-1}(0)$ we have
i)

$$
\lim _{n \longrightarrow+\infty} z_{i, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=0 \quad \text { for all } 1 \leq i \leq p
$$

ii)

$$
\begin{aligned}
& B\left(z_{1, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right), z_{2, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right), \ldots, z_{p, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right) \\
= & c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)+l_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) f\left(c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)^{k} .
\end{aligned}
$$

Proof. i) Using (3.7), we have $\lim _{n \rightarrow+\infty} z_{1, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=0$. Also, f is hemicontinuous at the origin, then we get

$$
\lim _{n \rightarrow+\infty} z_{2, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=0
$$

since $f(0) \neq 0$, we obtain by induction, $\lim _{n \rightarrow+\infty} z_{i, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=0$ for all $2 \leq i \leq p$ and $x_{1}, x_{2}, \ldots, x_{p} \in X \backslash f^{-1}(0)$.
ii) We have

$$
\begin{aligned}
& z_{1, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) \\
& +\sum_{i=2}^{p} z_{i, n}\left(x_{1}, \ldots, x_{p}\right)\left(f\left(z_{1, n}\left(x_{1}, \ldots, x_{p}\right)\right) f\left(z_{2, n}\left(x_{1}, \ldots, x_{p}\right)\right)\right. \\
& \left.\cdots f\left(z_{i-1, n}\left(x_{1}, \ldots, x_{p}\right)\right)\right)^{k} \\
= & c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)+\sum_{i=2}^{p} \frac{1}{p-1} l_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) f\left(z_{1, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)^{k} \\
= & c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)+l_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) f\left(z_{1, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)^{k} \\
= & c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)+l_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) f\left(c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)^{k} \\
= & d_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)
\end{aligned}
$$

for all $x_{1}, x_{2}, \ldots, x_{p} \in X \backslash f^{-1}(0)$, as desired.

4. Superstability of (1.3)

In this section we investigate the superstability of the functional equation (1.3).

Theorem 1. Assume that $f: X \rightarrow K$ and $\varphi: X^{p-1} \rightarrow \mathbb{R}^{+}$are two hemicontinuous functions at the origin satisfying

$$
\begin{equation*}
D f\left(x_{1}, x_{2}, \ldots, x_{p}\right) \leq \varphi\left(x_{2}, x_{3}, \ldots, x_{p}\right), \quad x_{1}, x_{2}, \ldots, x_{p} \in X \tag{4.1}
\end{equation*}
$$

Then either f is bounded or it satisfies the functional equation (1.3).
Proof. Suppose that f is unbounded. Letting $x_{2}=x_{3}=\cdots=x_{p}=0$ in (4.1), we obtain

$$
f\left(x_{1}\right)\left(f(0)^{p-1}-1\right) \leq \varphi(0,0, \ldots, 0)
$$

and so $f(0)^{p-1}=1$ since f is unbounded. Let $a_{1}, a_{2}, \ldots, a_{p-2}$ be fixed such that $f\left(a_{i}\right) \neq 0$ for all $i \in\{1,2, \ldots, p-2\}$ and $\left(y_{n}: n \in \mathbb{N}\right)$ be a sequence of elements of $X \backslash f^{-1}(0)$ such that

$$
\lim _{n \rightarrow+\infty}\left|f\left(y_{n}\right)\right|=+\infty
$$

Replacing $x_{1}, x_{2}, \ldots, x_{p}$ in (4.1) by $z_{1, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right), z_{2, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right), \ldots$, $z_{p, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)$, respectively, using (3.6) and Lemma 5(ii), we get

$$
\left|f\left(d_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)-\prod_{i=1}^{p} f\left(z_{i}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)\right|
$$

$$
\leq \varphi\left(z_{2, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right), \ldots, z_{p, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)
$$

Moreover, in view of Lemma 5(i), we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} z_{i, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=0 \text { for all } 2 \leq i \leq p \tag{4.2}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{p} \in X \backslash f^{-1}(0)$. This yields, since φ is hemicontinuous at the origin, that

$$
\lim _{n \rightarrow+\infty} \varphi\left(z_{2, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right), \ldots, z_{p, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)=\varphi(0,0, \ldots, 0)
$$

So, we get

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{f\left(d_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)-\prod_{i=1}^{p} f\left(z_{i, n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)}{f\left(y_{n}\right)} \\
= & \lim _{n \rightarrow+\infty} \frac{f\left(d_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)-f\left(c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right) \prod_{i=2}^{p} f\left(z_{i}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)}{f\left(y_{n}\right)} \\
= & 0 .
\end{aligned}
$$

Therefore, taking into account (3.1) and (3.4), we have

$$
\begin{align*}
& f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{p-2}\right) f\left(B\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right) \tag{4.3}\\
= & f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{p-2}\right) f\left(x_{1}\right) f\left(x_{2}\right) f\left(x_{3}\right) \cdots f\left(x_{p}\right) \prod_{i=2}^{p} \lim _{n \rightarrow+\infty} f\left(z_{i}\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right) \\
= & f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{p-2}\right) f\left(x_{1}\right) f\left(x_{2}\right) f\left(x_{3}\right) \cdots f\left(x_{p}\right) f^{n-1}(0)
\end{align*}
$$

for all $x_{1}, x_{2}, \ldots, x_{p} \in X \backslash f^{-1}(0)$. Using (4.3) and the fact that $f^{n-1}(0)=1$, we get

$$
f\left(B\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)=f\left(x_{1}\right) f\left(x_{2}\right) f\left(x_{3}\right) \cdots f\left(x_{p}\right)
$$

for all $x_{1}, x_{2}, \ldots, x_{p} \in X \backslash f^{-1}(0)$. From which we deduce that

$$
f\left(\alpha_{n}\left(x_{1}\right)\right)=f\left(y_{n}\right) f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{p-2}\right) f\left(x_{1}\right)
$$

for all $x_{1} \in X \backslash f^{-1}(0)$ and $n \in \mathbb{N}$. Thus, we obtain

$$
\begin{aligned}
& c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right) \\
= & B\left(\alpha_{n}\left(x_{1}\right), x_{2}, x_{3}, \ldots, x_{p}\right) \\
= & \alpha_{n}\left(x_{1}\right)+\sum_{i=2}^{p} x_{i}\left(f\left(\alpha_{n}\left(x_{1}\right)\right) f\left(x_{2}\right) \cdots f\left(x_{i-1}\right)\right)^{k} \\
= & \alpha_{n}\left(x_{1}\right)+\sum_{i=2}^{p} x_{i}\left(f\left(y_{n}\right) f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{p-2}\right) f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{i-1}\right)\right)^{k} \\
= & B\left(y_{n}, a_{1}, \ldots, a_{p-2}, x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left(f\left(y_{n}\right) f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{p-2}\right)\right)^{k} \sum_{i=2}^{p} x_{i}\left(f\left(x_{1}\right) \cdots f\left(x_{i-1}\right)\right)^{k} \\
= & y_{n}+\sum_{i=1}^{p-2} a_{i}\left(f\left(y_{n}\right) f\left(a_{1}\right) \cdots f\left(a_{i-1}\right)\right)^{k}+x_{1}\left(f\left(y_{n}\right) f\left(a_{1}\right) \cdots f\left(a_{p-2}\right)\right)^{k} \\
& +\left(f\left(y_{n}\right) f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{p-2}\right)\right)^{k} \sum_{i=2}^{p} x_{i}\left(f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{i-1}\right)\right)^{k} \\
= & y_{n}+\sum_{i=1}^{p-2} a_{i}\left(f\left(y_{n}\right) f\left(a_{1}\right) \cdots f\left(a_{i-1}\right)\right)^{k} \\
& +B\left(x_{1}, x_{2}, \ldots, x_{p}\right)\left(f\left(y_{n}\right) f\left(a_{1}\right) \cdots f\left(a_{p-2}\right)\right)^{k} \\
= & B\left(y_{n}, a_{1}, a_{2}, \ldots, a_{p-2}, B\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)
\end{aligned}
$$

for all $x_{1} \in X \backslash f^{-1}(0)$ and all $x_{2}, \ldots, x_{p} \in X$. It follows that

$$
c_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=d_{n}\left(x_{1}, x_{2}, \ldots, x_{p}\right)
$$

for all $x_{1} \in X \backslash f^{-1}(0)$ and $x_{2}, \ldots, x_{p} \in X$. Taking into account (3.1) and (3.4), we get

$$
f\left(B\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)=f\left(x_{1}\right) f\left(x_{2}\right) f\left(x_{3}\right) \cdots f\left(x_{p}\right)
$$

for all $x_{1} \in X \backslash f^{-1}(0)$ and $x_{2}, \ldots, x_{p} \in X$ since in the case when $f\left(x_{1}\right)=0$, (1.3) trivially holds. Therefore the proof of the theorem is complete.

Corollary 1. Let $\varepsilon>0$ be given. Assume that a function $f: X \rightarrow K$ is a hemicontinuous function at the origin satisfying

$$
D f\left(x_{1}, x_{n}, \ldots, x_{p}\right) \leq \varepsilon
$$

for all $x_{1}, x_{2}, \ldots, x_{p} \in X$. Then either

$$
|f(x)| \leq \frac{1+\sqrt{1+4 \varepsilon}}{2} \text { for all } x \in X
$$

or f satisfies the functional equation (1.3).
Proof. We put $\varphi=\varepsilon$ in Theorem 1, and then the result follows by Lemma 2.

As a consequences of Theorem 1, we have the following results.
Corollary 2. Assume that $f: X \rightarrow K$ and $\varphi: X^{p-1} \rightarrow \mathbb{R}^{+}$are two hemicontinuous functions at the origin satisfying

$$
D f\left(x_{1}, x_{2}, \ldots, x_{p}\right) \leq \varphi\left(x_{2}\right) \text { or respectively } \varphi\left(x_{3}\right) \text { or } \cdots \text { or } \varphi\left(x_{p}\right)
$$

for all $x_{1}, x_{2}, \ldots, x_{p} \in X$. Then either f is bounded or it satisfies the functional equation (1.3).

Corollary 3. Let $f: X \rightarrow K$ and $\varphi: X \rightarrow \mathbb{R}^{+}$be two hemicontinuous functions at the origin satisfying

$$
\begin{equation*}
|f(x+f(x) y)-f(x) f(y)| \leq \varphi(y), x, y \in X \tag{4.4}
\end{equation*}
$$

Then either f is bounded or

$$
\begin{equation*}
f(x+f(x) y)=f(x) f(y) \tag{4.5}
\end{equation*}
$$

for all $x, y \in X$.
Corollary 4 ([15]). Assume that $f: X \rightarrow K$ and $\varphi: X \rightarrow \mathbb{R}^{+}$are two hemicontinuous functions at the origin satisfying

$$
\left|f\left(x+f(x)^{k} y\right)-f(x) f(y)\right| \leq \varphi(y), x, y \in X
$$

Then either f is bounded or $f\left(x+f(x)^{k} y\right)=f(x) f(y)$ for all $x, y \in X$.
Corollary 5 ([15]). Let $f: X \rightarrow K$ and $\varphi: X \times X \rightarrow \mathbb{R}^{+}$be two hemicontinuous functions at the origin satisfying

$$
\left|f\left(x+f(x)^{k} y+f(x)^{k} f(y)^{k} z\right)-f(x) f(y) f(z)\right| \leq \varphi(y, z), x, y, z \in X
$$

Then either f is bounded or $f\left(x+f(x)^{k} y+f(x)^{k} f(y)^{k} z\right)=f(x) f(y) f(z)$ for all $x, y, z \in X$.

From Theorem 1, we can obtain the following three corollaries with particular cases of φ as natural results.

Corollary 6. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p-1}, \theta$ be nonnegative real numbers. Assume that $f: X \rightarrow K$ is a hemicontinuous function at the origin satisfying
$D f\left(x_{1}, x_{2}, \ldots, x_{p}\right) \leq \theta\left(\left\|x_{2}\right\|^{\alpha_{1}}+\left\|x_{3}\right\|^{\alpha_{2}}+\cdots+\left\|x_{p}\right\|^{\alpha_{p-1}}\right), x_{1}, x_{2}, \ldots, x_{p} \in X$.
Then either f is bounded or it satisfies the functional equation (1.3).
Corollary 7. Let α, θ be nonnegative real numbers. Let $f: X \rightarrow K$ be a hemicontinuous function at the origin satisfying

$$
\left|f\left(x+f(x)^{k} y\right)-f(x) f(y)\right| \leq \theta \quad\|y\|^{\alpha}, x, y \in X
$$

Then either f is bounded or $f\left(x+f(x)^{k} y\right)=f(x) f(y)$ for all $x, y \in X$.
Corollary 8. Let α, β, θ be nonnegative real numbers. Let $f: X \rightarrow K$ be a hemicontinuous function at the origin satisfying

$$
\left|f\left(x+f(x)^{k} y+f(x)^{k} f(y)^{k} z\right)-f(x) f(y) f(z)\right| \leq \theta\left(\|y\|^{\alpha}+\|z\|^{\beta}\right), x, y, z \in X
$$

Then either f is bounded or $f\left(x+f(x)^{k} y+f(x)^{k} f(y)^{k} z\right)=f(x) f(y) f(z)$ for all $x, y, z \in X$.
Remark 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function with $f(x)=3 x+4$ for all $x \in \mathbb{R}$. Then $|f(x+f(x) y)-f(x) f(y)|=|9 x+12|$, but f is unbounded and f does not satisfy the equation (4.5). This shows that the condition (4.4) is essential in Corollary 3. Therefore the condition (4.1) is essential in Theorem 1.

References

[1] J. Aczel and S. Golab, Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphisms, Aequationes Math. 4 (1970), 1-10.
[2] J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), no. 3, 411-416.
[3] J. A. Baker, J. Lawrence, and F. Zorzitto, The stability of the equation $f(x+y)=$ $f(x) f(y)$, Proc. Amer. Math. Soc. 74 (1979), no. 2, 242-246.
[4] K. Baron, On the continuous solutions of the Golab-Schinzel equation, Aequationes Math. 38 (1989), no. 2-3, 155-162.
[5] N. Brillouët-Belluot, On some functional equations of Golab-Schinzel type, Aequationes Math. 42 (1991), no. 2-3, 239-270.
[6] N. Brillouët-Belluot, J. Brzdek, and K. Cieplinski, On some recent developments in Ulam's type stability, Abstr. Appl. Anal. 2012 (2012), Art. ID 716936, 41 pp.
[7] N. Brillouët-Belluot and J. Dhombres, Équations fonctionnelles et recherche de sousgroupes, Aequationes Math. 31 (1986), no. 2-3, 253-293.
[8] J. Brzdek, Subgroups of the group \mathbb{Z}_{n} and a generalization of the Golab-Schinzel functional equation, Aequationes Math. 43 (1992), no. 1, 59-71.
[9] , Some remarks on solutions of the functional equation $f\left(x+f(x)^{n} y\right)=$ $t f(x) f(y)$, Publ. Math. Debrecen 43 (1993), no. 1-2, 147-160.
[10] , Golab-Schinzel equation and its generalizations, Aequationes Math. 70 (2005), no. 1-2, 14-24.
[11] , Stability of the generalized Golab-Schinzel equation, Acta Math. Hungar. 113 (2006), 115-126.
[12] \quad, On the quotient stability of a family of functional equations, Nonlinear Anal. 71 (2009), no. 10, 4396-4404.
[13] , On stability of a family of functional equations, Acta Math. Hungar. 128 (2010), no. 1-2, 139-149.
[14] J. Brzdek and K. Cieplinski, Hyperstability and superstability, Abstr. Appl. Anal. 2013 (2013), Article ID 401756, 13 pages.
[15] A. Chahbi, On the superstability of the generalized Golab-Schinzel equation, Internat. J. Math. Anal. 6 (2012), no. 54, 2677-2682.
[16] A. Charifi, B. Bouikhalene, S. Kabbaj, and J. M. Rassias, On the stability of Pexiderized Golab-Schinzel equation, Comput. Math. Appl. 59 (2010), no. 9, 3193-3202.
[17] J. Chudziak, Approximate solutions of the Golab-Schinzel equation, J. Approx. Theory 136 (2005), no. 1, 21-25.
[18] , Stability of the generalized Golab-Schinzel equation, Acta Math. Hungar. 113 (2006), no. 1-2, 133-144.
[19] , Approximate solutions of the generalized Golab-Schinzel equation, J. Inequal. Appl. 2006 (2006), Article ID 89402, 8 pp.
[20] , Stability problem for the Golab-Schinzel type functional equations, J. Math. Anal. Appl. 339 (2008), no. 1, 454-460.
[21] J. Chudziak and J. Tabor, On the stability of the Golab-Schinzel functional equation, J. Math. Anal. Appl. 302 (2005), no. 1, 196-200.
[22] R. Ger and P. Šemrl, The stability of the exponential equation, Proc. Amer. Math. Soc. 124 (1996), no. 3, 779-787.
[23] S. Golab and A. Schinzel, Sur l'equation fonctionnelle $f(x+y f(x))=f(x) f(y)$, Publ. Math. Debrecen 6 (1959), 113-125.
[24] D. H. Hyers, G. I. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Progress in Nonlinear Differential Equations and their Applications 34, Birkhäuser, Boston, Inc., Boston, MA, 1998.
[25] E. Jablonska, On solutions of some generalizations of the Golab-Schinzel equation, In: Functional Equations in Mathematical Analysis, pp. 509-521. Springer Optimization and its Applications vol. 52. Springer 2012.
\qquad , On continuous solutions of an equation of the Golab-Schinzel type, Bull. Aust. Math. Soc. 87 (2013), no. 1, 10-17.
[27] _ On locally bounded above solutions of an equation of the Golab-Schinzel type, Aequationes Math. 87 (2014), no. 1-2, 125-133.
[28] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
[29] Th. M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[30] A. Roukbi, D. Zeglami, and S. Kabbaj, Hyers-Ulam stability of Wilson's functional equation, Math. Sci. Adv. Appl. 22 (2013), 19-26.
[31] D. Zeglami, The superstability of a variant of Wilson's functional equations on an arbitrary group, Afr. Mat. 26 (2015), 609-617.
[32] D. Zeglami and S. Kabbaj, On the supesrtability of trigonometric type functional equations, British J. Math. \& Comput. Sci. 4 (2014), no. 8, 1146-1155.
[33] D. Zeglami, S. Kabbaj, A. Charifi, and A. Roukbi, μ-Trigonometric functional equations and Hyers-Ulam stability problem in hypergroups, Functional Equations in Mathematical Analysis, pp. 337-358, Springer, New York, 2012.
[34] D. Zeglami, A. Roukbi, and S. Kabbaj, Hyers-Ulam stability of generalized Wilson's and d'Alembert's functional equations, Afr. Mat. 26 (2015), 215-223.

Madjid Eshaghi Gordji
Department of Mathematics
Faculty of Sciences
South Tehran Branch
Islamic Azad University
Tehran, Iran
E-mail address: madjid.eshaghi@gmail.com, meshaghi@semnan.ac.ir
Themistocles M. Rassias
Department of Mathematics
National Technical University of Athens
Zofrafou Campus, 15780 Athens, Greece
E-mail address: trassias@math.ntua.gr
Mohamed Tial
Department of Mathematics
Faculty of Sciences, IBN Tofail University
BP: 14000. Kenitra, Morocco
E-mail address: tialmohamed@gmail.com
Driss Zeglami
Department of Mathematics
E.N.S.A.M, Moulay Ismail University

BP: 15290 Al Mansour-Meknes, Morocco
E-mail address: zeglamidriss@yahoo.fr

