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ON A COMPOSITE FUNCTIONAL EQUATION RELATED TO
THE GOLAB-SCHINZEL EQUATION

MabpJip ESHAGHI GORDJI, THEMISTOCLES M. RASSIAS, MOHAMED TIAL,
AND DRISS ZEGLAMI

ABSTRACT. Let X be a vector space over a field K of real or complex
numbers and k € N. We prove the superstability of the following gener-
alized Golab—Schinzel type equation

P P
f@i 4+ wif(@)  fla2)k - fl@i)®) = [] f@), @122, 25 € X,
i=2 i=1
where f : X — K is an unknown function which is hemicontinuous at the
origin.

1. Introduction and preliminaries

Let X be a vector space over a field K of real or complex numbers. The
Golab—Schinzel equation

(1.1) f@+ f(@)y) = f(2)f(y) for z,y€ X,
and its generalization
(1.2) fla+ f(@)y) = Af(2)f(y) for z,y€ X,

where k € N, A € K\ {0} are fixed and f: X — K is an unknown function,
are intensively studied in the last half-century. The solutions of (1.1) and
(1.2) have been investigated under various regularity assumptions, e.g., in [1],
[4,5,6,7,8,9,10] and [14, 23]. For more details concerning (1.1) and (1.2), its
applications and further generalizations we refer the reader to a survey paper
[10] (see also [6, 7, 8, 9, 10, 11, 12, 13, 14] and [25, 26, 27]).

The stability problem for (1.1) and (1.2) has been considered in [17, 18, 19,
20, 21]. It has been proved in [19] that for every k € N, Eq. (1.2) is superstable
in the class of functions f : X — K continuous at 0 on rays, i.e., every such
function satisfying the inequality

|f(x+ f(2)Fy) = Af(@)f(y) | <e for z,y€X,
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where € is a fixed positive real number, either is bounded or satisfies (1.2). The
first results of that kind have been studied in [3] for the exponential equation,
in [2] for the cosine equation on an abelian group and in [30, 31, 32, 33, 34]
for trigonmetric functional equations on any group. For further information
regarding superstability of functional equations we refer to [24]. Recently in
[15], it has been proved that the functional equation

fl+ f@)y+ f@) @) 2) = f@) fW)f(z), zyz€X,

is superstable. Let p € N such that p > 2 and given a function f: X — K, we
will denote its difference by an operator Df : XP? — K as

Df(x1,z2,...,2p) = [f(z1+ Ziﬂz‘f(xl)kf(SCQ)k T f(xz?l)k) - Hf('rz)

for all x1,29,...,2, € X.
In the present paper, we deal with the superstability problem for the gener-
alized Golab—Schinzel type equation

(1.3) f(.’L'l—f—Z.Tif(iEl)kf(iEQ)k e f(aci_l)k):H f(x) for z1,ma,...,2p€X,
=2 i=1

where f is defined on a linear space X over the field K of real or complex
numbers and takes its values in K, namely, we investigate the condition

Df(z1,Zn, ..., xp) < @(x2,Z3,...,2p), T1,T2,...,Tp € X.
As consequences, we give some applications.
In what follows N and R stand for the sets of all positive integers and real
numbers, respectively. X is a vector space over a field K of real or complex
numbers and p and k are nonnegative integer constants such that p > 2.

2. Auxiliary results

To formulate the main result of the paper, we need the following definition
(cf. [19]).

Definition 1. A function f : X — K is hemicontinuous at the origin provided,
for every z € X, the function f, : K — K, given by

fm(t) = f(tx)

for t € K is continuous at 0.
The functional equation (1.3) is connected with the equation (1.2) as follows:

Lemma 1. A function f: X — K satisfies the functional equation

(2.1) fla + inf(z1>’€f(z2>k o frio)k) = _1'[ flxs)
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for all x1,x2,...,2p € X if and only if f satisfies the functional equation

(2.2) fla+ f@)fy) = FOP2f(x)f(y)
forallz,ye X.
Proof. Setting in (2.1) 3 = x4 = --- = x, = 0, we clearly see that, (2.1)

implies (2.2). Thus let us assume that f satisfies (2.2). Putting © = y = 0 in
the identity (2.2) we obtain that

F(0)P = f(0).
Then we get f(0)P~! = 1if f # 0, and we have

Sz + inf(iﬁ)kf(zz)k e f(zifl)k>

= f(a1+ f(z1)" {u + > mif(z)t -f(xi_m}

i=3
p
= FOP2f () fwa + Y wif(w2)* - flwi1)¥)
i=3
for all z1,22,...,2, € X. By induction, we get
p+1

fln+ ) mif(@)f fs)* - flwia)¥)

= FOP2F (@)  F0)P > f(wa)* flas + > wif (w2) -+ flwin)).

i=4
P
= (O ] )
i=1
= I /(=)
i=1
for all z1,2,...,2, € X. O

Remark 1. A function f : X — K with f(0) > 0 satisfies the functional
equation (2.1) if and only if f satisfies the functional equation:

flz+ f(@)*y) = f(z)f(y) for z,y € X.
Lemma 2. Let f: X — K be a bounded function satisfying

i=2
for all x1,22,...,2p, € X. Then

Fa)] < TV

(2.3) f(wl+Zwif(w1)’“f(fc2)k---f(:cz-_l)’“)—Hf(:ci) <e

for all x € X.
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Proof. Assume that f is a bounded function satisfying the inequality (2.3) and
let M =sup|f|. Then we get, for all x1,z2,...,x, € X, that

Hf(%)

from which we obtain that M? — M —e < 0. If M > 1, then
M?*—-M—e<MP—-M-e<0.

<e+ M,

This inequality shows that

< 14+ v1+4e

M
2
and so
14+ +v1+4e 14+ +v1+4e
F@)] < Max(1, 15 - TEV
for all z € X. O

3. Technical lemmas

We assume throughout the rest of this section that f is an unbounded func-
tion satisfying (2.3). Let a1,aq,...,a,—2 be fixed elements of X such that
f(a;)) # 0 for all i € {1,2,...,p—2} and (y, : n € N) be a sequence of
elements of X\ f~1(0) such that

lm |f(yn)| = +o0.

n—-4oo
We will now introduce some notations that we will use throughout the rest
of the paper.

Definition 2. For all z1,2,...,2, in X and n € N put

B(w1,xa, .y wp) = a1+ 3 wif (w1)* f(x2)" - flaion)F,

=2

and define the sequences of functions d,, a,, and ¢, by

dn(x1,22,...,2p) = B(Yn, a1,02,...,a0p—2, B(x1,22,...,2p)),
an(x1) = B(yYn,a1,a2,...,0p—2,1),
en(x1, T2y ., xp) = Blag(x1), 22, T3, .., Xp)-

Lemma 3. Let f be an unbounded function satisfying (2.3). Then, for all
1,T2,...,2p € X, we have

(31)  lim HEEeesto))  f(0)) f(az) - flap-2) f(B(xr, 22, .., 7)),

n—-+oo

32)  lim Ll — f(a)) f(as) - flap_2) f(an).

n—-+0o0o Yn
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For all z1 € X\ f71(0) and z2,...,2, € X, we have
(3.3)

JJm R = fe)f() - ),

(3.4)
i Jenlopgaetull = f(ar) f(az) - flap—2)f (1) f (22)f (ws) - f(a),

and we have ¢, (z1, 22, ...,2p) € X\f71(0) for all x1,z2,...,2, € X\ f7H0).
Proof. For every x1,%2,...,2p, in X and n € N, using (2.3) to get

|f(dn(l'1,l'2, s ’xp)) - f(yn)f(a1)f(a2) T f(aP—Q)f(B(xla L2, - - - 7'rp))|

< €.

Dividing the above inequality by f(y»), then we get (3.1). Putting 2 = 23 =
.-+ =xp = 0 in the identity (3.1) to obtain (3.2). Hence

lim |f(an (1)) = +o0

n—->—+00
for all z; € X\ f~1(0). By virtue of (2.3), we have
p
flen(@n,az,. o ap)) = flan(@) [] fl@i)] < e
i=2

Dividing by f(ay) and passing to the limit as n — +oo with the use of
limy, s 100 | f(an(21))| = +00, we obtain (3.3). Thus, taking into account (3.2)
and (3.3), we get (3.4) from which we conclude that, for all z1,z2,...,2, €
X\ f7(0), we have

(w1, m2,. .. 2,) € X\ fH0). 0
Definition 3. We define
dn(x1,22,...,2p) — cn(T1,22,...,Tp)
) In(x1, 22, ..., =
(3 5) (:Cl ) zp) f(Cn(.T1,-T2,---,-Tp))k

for all z1,22,...,2, € X\ f1(0).

Lemma 4. We have

i)

(36) dp(x1, 22, ..., xp) = (@1, T2y ..., Tp)
- + L1, 22, xp) flen (@1, T2, 2p))F,
ii)

(3.7) nEIJIrlool"(zl’zQ""’xp> =0

for all x1,2,...,2, € X\ f71(0).
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Proof. 1) Equality (3.6) is an immediate consequence of (3.5).

ii) For every 1, xa,...,2, € X\ f1(0), we have
ln(z1,22,. .., 2p)
) e b e J(on(e)
~ e (flan(ea) Sy o) — 5
x B(za,x3,...,Tp).

By virtue of (3.2) and (3.4), we obtain

ngr—ir-loo ln(x1,22,...,2p) = 0.

Thus, as f is hemicontinuous at the origin, we get

lim 29 p,(z1,29,...,2,) =0
n—+00 ,n( Y Y Y P) 9

and inductively, since f(0) # 0, we obtain that

(3.8) lim 2z n(x1,22,...,2p) =0 forall 2 <i<p,
n—-+o0o

as desired. 0
Definition 4. We define the sequences of functions 21 n,22.n,-- ., Zpn by

2in(T1, 22, ..., 2p) = cn(T1, 22, ..., Tp),

Z2,n($1; T2,... 7'1;1)) = p_illn(-rlaan SRR xp)a

. _ 1 ln(21,...,%p)
(T, 22,5 2p) = P e Gom @) F i @i D

i>3
for all z1,22,...,2, € X \ f71(0).

Remark 2. The sequences of functions z; , i € {1,2,...,p} are well defined.
Moreover, as f is hemicontinuous at the origin, we get
liIJIrl flzin(z1,22,...,2p)) = f(0) forall2 <i<p.
n—-+0oo
Then, for all ¢« € {1,2,...,p}, from a certain positive integer N;, we shall have
f(zin(21,22,...,2p)) # 0. For n € N such that n > N := max;cq12,... ) (IVy)
we get that f(z n(x1,...,2p)) #0forall i € {1,2,...,p}.

Lemma 5. For every x1,%s,...,2, € X\f~1(0) we have
i)
ni{r—il-ooZi’n(xl’x2, coxp) =0 foralll <i<p,
ii)
B(zin(x1,%2, .-, Tp)s 220 (T1, T2, o, Tp)s ooy Zp (X1, T2y -, Tp))

= cp(x1, T2, .., Xp) + ln(@1, T2y .. ., xp) fen (21, 22, . ... ,xp))k.
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Proof. 1) Using (3.7), we have lim, o 21 n(21,22,...,2p) = 0. Also, f is
hemicontinuous at the origin, then we get
ngrfoo zon(x1,22,...,2p) =0,
since f(0) # 0, we obtain by induction, limy, 40 2in(z1,22,...,2p) = 0 for
all 2 <i <pandzy,22,...,7, € X\ f1(0).
ii) We have
2in(z1, 22, ..., 2p)
P
+Zzz n(zla 7xp)(f(zl,n(zla 7xp))f(22,n(1'1; 51'p))
1=2

p
1
= cn(ml,acg, P ,:ij) + Z —ln(l'l,l'g, e ,.Tp)f(zl,n(l'l,l'g, .. .,mp))k

pard Sl
= cp(w1, T2, 2p) (21,22, .o 2p) f (210 (21, 22, 2p))F
= cn(xl,xg,...,:cp)—I—Zn(xl,xg,...,:I:p)f(cn(xl,xg,...,:ij))k
=dn(z1,22,...,2p)
for all z1,22,...,2, € X\ f1(0), as desired. O

4. Superstability of (1.3)

In this section we investigate the superstability of the functional equation
(1.3).

Theorem 1. Assume that f: X — K and ¢ : XP~! — Rt are two hemicon-
tinuous functions at the origin satisfying

(4.1) Df(z1,xa,...,2p) < @(x2,23,...,2p), 1,T2,...,Tp € X.

Then either f is bounded or it satisfies the functional equation (1.3).

Proof. Suppose that f is unbounded. Letting o = 23 =--- =z, = 0 in (4.1),
we obtain

Fl@)(F(0)P~F =1) < ¢(0,0,...,0),
and so f(0)?~! = 1 since f is unbounded. Let aq,as,...,a,_2 be fixed such
that f(a;) # 0 for all i € {1,2,...,p— 2} and (y, : n € N) be a sequence of
elements of X\ f~1(0) such that

lim [ f(yn)| = +o0.

n—+oo
Replacing 1, z2, ..., zp in (4.1) by 21 n(z1, 22, ..., Tp), 22,n(T1, 22, ..., Tp), .. -,
Zpn(T1,%2,...,Tp), respectively, using (3.6) and Lemma 5(ii), we get

p
flda(zr, @z, ap) = [] flzilen, 22, 2p))
i=1
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< @(zam(T1, 22, .. Tp)y . oy 2p (X1, T2, .., Tp)).

Moreover, in view of Lemma 5(i), we have

(4.2) hI—P Zin(T1,22,...,2p) =0 forall 2 <i<p,
n—-+0oo
for all @1, 22, ..., 2, € X\ f71(0). This yields, since ¢ is hemicontinuous at the
origin, that
ngr—ir-loo V(zon(T1,22, .. Tp)y -y Zpn(T1, 22, ..., 2p)) = ©(0,0,...,0).
So, we get
p
fldn(@1,22,. .., 3p)) — H f(zin (@1, 22, .., 2p))
lim =1
n—+oo f(yn)
p
fldn(z1,22,.. ., 2p)) = flen(wr, 22, .., 2p)) H f(zi(@1, 22, ... 2p))
= lim =2
n—+0o0 f(yn)
=0.
Therefore, taking into account (3.1) and (3.4), we have
(4.3)

flar)f(az)--- flap—2) f(B(x1, 22, ..., 7p))
= f(a1)f(az) - flap—2)f(z1)f(z2)f(23) " f(wp)HnEIfxf(Zi(:m,xz, ey p))

1=

= f(a)f(az) - Flap-2)f (1) f(@2) () - - [ () 7 (0)

for all z1,x9,...,2, € X\f71(0). Using (4.3) and the fact that f*~1(0) = 1,
we get

f(B(ay, 2, ... xp)) = f(@1) f(2) f(23) - f(zp)
for all z1,22,...,2, € X\ f71(0). From which we deduce that

flan(1)) = fyn) flar)f(az) - fap-2) f(z1)
for all z; € X\ f~1(0) and n € N. Thus, we obtain

Cn(‘rlv‘er c '51"p)

= B(an (1), 22,23, ..., Tp)

= an(a1) + Zm(f(oan(:cl))f(zz) o faio)"

= ap(z1) + in(f(yn)f(m)f(az) o flap—2) f(z1) f@2) - flzio1))®

= B(ynvalv <. '5ap7251'1)
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P

+ (f(yn) f(ar) f(az) -+~ flap-2)* D ai(f(ar) -+ flwioa))*

=2

= Yn + Z_:ai(f(yn)f(al) o flaima)® 2 (fya) flar) - fap-2))*

p

+ (f(yn)f(ar)f(az) - fap-2))* Zwi(f(fcl)f(wa) o flwim))®

=Y+ ai(f(ya)flar) - flaia))

i=1
+ B(z1, 22, .., 2p) (f(yn) f(a1) -+ f(ap-2))*
= B(yn,a1,0a2,...,ap—2, B(x1,22,...,2p))
for all z; € X\ f71(0) and all o, ...,2, € X. It follows that
en(21, T2, ..., 2p) = dp(x1, T2, ..., Tp)

for all z; € X\ f71(0) and 22, ...,z, € X. Taking into account (3.1) and (3.4),
we get

fB(a1, @2, xp)) = fla1)f(w2) f(23) - flzp)
for all z; € X\ f~1(0) and xs,...,x, € X since in the case when f(z1) = 0,
(1.3) trivially holds. Therefore the proof of the theorem is complete. (]

Corollary 1. Let ¢ > 0 be given. Assume that a function f: X — K is a
hemicontinuous function at the origin satisfying

Df(z1,xn,...,xp) <¢€
for all z1,22,...,2, € X. Then either
1++V1+4
|f(x)|§% forallz e X

or f satisfies the functional equation (1.3).

Proof. We put ¢ = ¢ in Theorem 1, and then the result follows by Lemma
2. d

As a consequences of Theorem 1, we have the following results.

Corollary 2. Assume that f : X — K and ¢ : XP~! — RT are two hemicon-
tinuous functions at the origin satisfying

Df(z1,x2,...,2p) < @(x) or respectively o(xzs) or --- or ¢(xp)

forallxy,xa,...,x, € X. Then either f is bounded or it satisfies the functional
equation (1.3).
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Corollary 3. Let f : X — K and ¢ : X — RT be two hemicontinuous
functions at the origin satisfying

(4.4) [f(@+ f)y) — F@) fy)]l < oly), z,y € X.
Then either f is bounded or
(4.5) flx+f(@)y) = f(2)f(y)

forallz,y € X.

Corollary 4 ([15]). Assume that f : X — K and ¢ : X — R are two
hemicontinuous functions at the origin satisfying

|[fz+ f(@)*y) — f2)f(y)] < e(y), =,y X.
Then either f is bounded or f(x + f(z)*y) = f(z)f(y) for all x,y € X.

Corollary 5 ([15]). Let f: X — K and ¢ : X x X — RT be two hemicontin-
uwous functions at the origin satisfying

|f@+ f@)fy+ f@)F f(y)Fz) = F@) f W) f(2)] < ey, 2), 2,y,2 € X.

Then either f is bounded or f(x + f(x)*y + f(2)*f(y)F2) = f(z)f(y)f(2) for
all z,y,z € X.

From Theorem 1, we can obtain the following three corollaries with partic-
ular cases of ¢ as natural results.

Corollary 6. Let ai,as,...,ap—1, 8 be nonnegative real numbers. Assume
that f : X — K is a hemicontinuous function at the origin satisfying

Df(z1,@2,...,2p) < O(|z2l|™ + los|® + - + [lap|*7), 21,22,..., 25 € X.
Then either f is bounded or it satisfies the functional equation (1.3).

Corollary 7. Let a, 0 be nonnegative real numbers. Let f : X — K be a
hemicontinuous function at the origin satisfying

|f@+ f(@)*y) = f@) f )] <0 llyl™ =y X.
Then either f is bounded or f(x + f(z)*y) = f(z)f(y) for all x,y € X.

Corollary 8. Let o, 3, 0 be nonnegative real numbers. Let f : X — K be a
hemicontinuous function at the origin satisfying

@+ f(@)fy+ f@) @) 2) = F@) f@) )] <0yl + [127), @9,z € X.

Then either f is bounded or f(z + f(z)*y + f(2)kf(y)k2) = f(2)f(y)f(2) for
all z,y,z € X.

Remark 3. Let f : R — R be a function with f(x) = 3z + 4 for all z € R.
Then |f(z + f(z)y) — f(x)f(y)| = |9z + 12|, but f is unbounded and f does
not satisfy the equation (4.5). This shows that the condition (4.4) is essential
in Corollary 3. Therefore the condition (4.1) is essential in Theorem 1.
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