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APPROXIMATION OF CUBIC MAPPINGS WITH

n-VARIABLES IN β-NORMED LEFT BANACH MODULES

ON BANACH ALGEBRAS

Majid Eshaghi Gordji, Hamid Khodaei, and Abbas Najati

Abstract. Let M = { 1, 2, . . . , n } and let V = { I ⊆ M : 1 ∈ I }. Denote
M \I by Ic for I ∈ V. The goal of this paper is to investigate the solution

and the stability using the alternative fixed point of generalized cubic
functional equation∑

I∈V
f
(∑

i∈I

aixi −
∑
i∈Ic

aixi

)

= 2n−2a1

n∑
i=2

a2i
[
f(x1 + xi) + f(x1 − xi)

]
+ 2n−1a1

(
a21 −

n∑
i=2

a2i

)
f(x1)

in β–Banach modules on Banach algebras, where a1, . . . , an ∈ Z \ {0}
with a1 ̸= ±1 and an = 1.

1. Introduction

We say a functional equation (ξ) is stable if any function g satisfying the
equation (ξ) approximately is near to true solution of (ξ).

The first stability problem concerning group homomorphisms was raised by
Ulam [26] in 1940 and affirmatively solved by Hyers [8]. Aoki [1] and Rassias
[23] provided a generalization of the Hyers theorem for additive and linear
functions, respectively, by allowing the Cauchy difference to be unbounded. In
1978, Th. M. Rassias [23] proved the following theorem.

Theorem 1.1. Let f : E −→ E′ be a function from a normed vector space E
into a Banach space E′ subject to the inequality

(1.1) ∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ(∥x∥p + ∥y∥p)
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for all x, y ∈ E, where ϵ and p are constants with ϵ > 0 and p < 1. Then there
exists a unique additive function T : E −→ E′ such that

(1.2) ∥f(x)− T (x)∥ ≤ 2ϵ

2− 2p
∥x∥p

for all x ∈ E. If p < 0, then the inequality (1.1) holds for all x, y ̸= 0, and (1.2)
for x ̸= 0. Also, if the function t 7→ f(tx) from R into E′ is continuous in real
t for each fixed x ∈ E, then T is linear.

In 1991, Z. Gajda [6] answered the question for the case p > 1, which was
raised by Rassias. This new concept is known as Hyers–Ulam–Rassias stability
of functional equations. During the last decades several stability problems of
functional equations have been investigated in the spirt of Hyers–Ulam–Rassias.
See [4, 7, 9, 15, 24, 25] for more detailed information on stability of functional
equations.

Jun and Kim [10] introduced the following functional equation

(1.1) f(2x1 + x2) + f(2x1 − x2) = 2f(x1 + x2) + 2f(x1 − x2) + 12f(x1)

and they established the general solution and the generalized Hyers–Ulam–
Rassias stability for the functional equation (1.1). They proved that a function
f between real vector spaces X and Y is a solution of (1.1) if and only if there
exits a unique function C : X × X × X −→ Y such that f(x) = C(x, x, x)
for all x ∈ X, and C is symmetric for each fixed one variable and is additive
for fixed two variables. It is easy to see that the function f(x) = cx3 satisfies
the functional equation (1.1), so it is natural to call (1.1) the cubic functional
equation and every solution of the cubic functional equation (1.1) is said to be
a cubic function.

Jun et al. [13] considered the following functional equation

(1.2) f(ax1+x2)+f(ax1−x2) = a
[
f(x1+x2)+f(x1−x2)

]
+2a(a2−1)f(x1)

for any fixed integers a with a ̸= 0,±1. In this case, we see the equivalence
of (1.1) and (1.2) (see [13]). Therefore, every solution of functional equations
(1.1) and (1.2) is a cubic function (See Theorem 2.2 of [13]). For other cubic
functional equations see [5], [12], [17]-[21].

Let M = { 1, 2, . . . , n } and let V = { I ⊆ M : 1 ∈ I }. Denote M \I by Ic for
I ∈ V. We will extend Eq. (1.2) to the general n-dimensional cubic functional
equation for n ≥ 2:

∑
I∈V

f
(∑

i∈I

aixi −
∑
i∈Ic

aixi

)
= 2n−2a1

n∑
i=2

a2i
[
f(x1 + xi) + f(x1 − xi)

]
(1.3)

+ 2n−1a1

(
a21 −

n∑
i=2

a2i

)
f(x1),
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where a1, . . . , an ∈ Z\{0} with a1 ̸= ±1 and an = 1.Moreover, we will study the
stability of the given equation (1.3) in β–Banach module over Banach algebra
via fixed point method.

As a special case, if n = 2 in (1.3), then we get the functional equation (1.2).
Also, by putting n = 3 in (1.3), we obtain

f(a1x1 − a2x2 − x3) + f(a1x1 + a2x2 − x3)

+ f(a1x1 + x3 − a2x2) + f(a1x1 + a2x2 + x3)

= 2a1a
2
2

[
f(x1 + x2) + f(x1 − x2)

]
+ 2a1

[
f(x1 + x3) + f(x1 − x3)

]
+ 4a1(a

2
1 − a22 − 1)f(x1).

2. General solution

Let bothX and Y be real vector spaces. We here present the general solution
of (1.3).

Lemma 2.1. Let f : X → Y be a cubic function. Then f satisfies

f(x1 + x2 + ax3)+ f(x1 + x2 − ax3)+ f(x1 − x2 + ax3)+ f(x1 − x2 − ax3)

(2.1)

= 2
[
f(x1 + x2) + f(x1 − x2)

]
+ 2a2

[
f(x1 + x3) + f(x1 − x3)

]
− 4a2f(x1)

for all x1, x2, x3 ∈ X, where a is an integer.

Proof. If a = 0, then it is clear. If a ∈ {±1}, the general solution of (2.1)
is of the form f(x) = C(x) + A(x) + f(0), where C is a cubic mapping and
A is an additive mapping (see [11] and [14]). Hence f satisfies (2.1) since f
is cubic. Now, let a ̸= 0,±1. Since f satisfies the functional equation (1.1),
putting x1 = x2 = 0 in (1.1), we get f(0) = 0. Setting x1 = 0 in (1.1) to
get f(−x2) = −f(x2) for all x2 ∈ X. Letting x2 = 0 in (1.1), we obtain that
f(2x1) = 8f(x1) for all x1 ∈ X.Also, f satisfies the functional equation (1.2) for
any integers a with a ̸= 0,±1. Letting x2 = 0 in (1.2), we get f(ax1) = a3f(x1)
for all x1 ∈ X. If we replace x2 by ax2 in (1.2), it is easy to see that the equation
(1.2) can be written in the following way,

(2.2) f(x1+ax2)+f(x1−ax2) = a2
[
f(x1+x2)+f(x1−x2)

]
+2(1−a2)f(x1)

for all x1, x2 ∈ X. Replacing x1 and x2 by x1 + x2 and x1 − x2 in (1.2),
respectively, and using the identity f(2x) = 8f(x), we have

f
(
(a+ 1)x1 + (a− 1)x2

)
+ f

(
(a− 1)x1 + (a+ 1)x2

)
(2.3)

= 8a
[
f(x1) + f(x2)

]
+ 2a(a2 − 1)f(x1 + x2)

for all x1, x2 ∈ X. Replacing x1 and x2 by x1 + ax3 and x2 + ax3 in (2.3),
respectively, we have

f
(
(a+ 1)x1 + (a− 1)x2 + 2a2x3

)
+ f

(
(a− 1)x1 + (a+ 1)x2 + 2a2x3

)
(2.4)

= 8a
[
f(x1 + ax3) + f(x2 + ax3)

]
+ 2a2(a2 − 1)f(x1 + x2 + 2ax3)
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for all x1, x2, x3 ∈ X. Replacing x3 by −x3 in (2.4), we get

f
(
(a+ 1)x1 + (a− 1)x2 − 2a2x3

)
+ f

(
(a− 1)x1 + (a+ 1)x2 − 2a2x3

)
(2.5)

= 8a
[
f(x1 − ax3) + f(x2 − ax3)

]
+ 2a(a2 − 1)f(x1 + x2 − 2ax3)

for all x1, x2, x3 ∈ X. Now, by adding (2.4) and (2.5), we have

f
(
(a+ 1)x1 + (a− 1)x2 + 2a2x3

)
+ f

(
(a+ 1)x1 + (a− 1)x2 − 2a2x3

)(2.6)

+ f
(
(a− 1)x1 + (a+ 1)x2 + 2a2x3

)
+ f

(
(a− 1)x1 + (a+ 1)x2 − 2a2x3

)
= 8a

[
f(x1 + ax3) + f(x1 − ax3) + f(x2 + ax3) + f(x2 − ax3)

]
+ 2a(a2 − 1)

[
f(x1 + x2 + 2ax3) + f(x1 + x2 − 2ax3)

]
for all x1, x2, x3 ∈ X. On the other hand, if we substitute x1 by x1 + ax3 and
x2 by x2 − ax3 in (2.3), f satisfies

f
(
(a+ 1)x1 + (a− 1)x2 + 2ax3

)
+ f

(
(a− 1)x1 + (a+ 1)x2 − 2ax3

)
(2.7)

= 8a
[
f(x1 + ax3) + f(x2 − ax3)

]
+ 2a(a2 − 1)f(x1 + x2)

for all x1, x2, x3 ∈ X. Replacing x3 by −x3 in (2.7), we get

f
(
(a+ 1)x1 + (a− 1)x2 − 2ax3

)
+ f

(
(a− 1)x1 + (a+ 1)x2 + 2ax3

)
(2.8)

= 8a
[
f(x1 − ax3) + f(x2 + ax3)

]
+ 2a(a2 − 1)f(x1 + x2)

for all x1, x2, x3 ∈ X. Adding (2.7) to (2.8), we lead to

f
(
(a+ 1)x1 + (a− 1)x2 + 2ax3

)
+ f

(
(a+ 1)x1 + (a− 1)x2 − 2ax3

)
(2.9)

+ f
(
(a− 1)x1 + (a+ 1)x2 + 2ax3

)
+ f

(
(a− 1)x1 + (a+ 1)x2 − 2ax3

)
= 8a

[
f(x1 + ax3) + f(x1 − ax3) + f(x2 + ax3) + f(x2 − ax3)

]
+ 4a(a2 − 1)f(x1 + x2)

for all x1, x2, x3 ∈ X. Now, replacing x3 by ax3 in (2.9), we obtain

f
(
(a+ 1)x1 + (a− 1)x2 + 2a2x3

)
+ f

(
(a+ 1)x1 + (a− 1)x2 − 2a2x3

)(2.10)

+ f((a− 1)x1 + (a+ 1)x2 + 2a2x3) + f((a− 1)x1 + (a+ 1)x2 − 2a2x3)

= 8a
[
f(x1 + a2x3) + f(x1 − a2x3) + f(x2 + a2x3) + f(x2 − a2x3)

]
+ 4a(a2 − 1)f(x1 + x2)

for all x1, x2, x3 ∈ X. If we compare (2.6) with (2.10), we conclude that

2a(a2 − 1)
[
f(x1 + x2 + 2ax3) + f(x1 + x2 − 2ax3)

]
(2.11)

+ 8a
[
f(x1 + ax3) + f(x1 − ax3) + f(x2 + ax3) + f(x2 − ax3)

]
= 8a

[
f(x1 + a2x3) + f(x1 − a2x3) + f(x2 + a2x3) + f(x2 − a2x3)

]
+ 4a(a2 − 1)f(x1 + x2)
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for all x1, x2, x3 ∈ X. Since (2.2) holds for all integers a, it follows from (2.2)
that

f(x1 + x2 + 2ax3) + f(x1 + x2 − 2ax3)(2.12)

= 4
[
f(x1 + x2 + ax3) + f(x1 + x2 − ax3)

]
− 6f(x1 + x2)

and

f(x1 + a2x3) + f(x1 − a2x3) + f(x2 + a2x3) + f(x2 − a2x3)(2.13)

= a4
[
f(x1 + x3) + f(x1 − x3) + f(x2 + x3) + f(x2 − x3)

]
+ 2(1− a4)

[
f(x1) + f(x2)

]
for all x1, x2, x3 ∈ X. It follows from (2.2), (2.11), (2.12) and (2.13) that

f(x1 + x2 + ax3) + f(x1 + x2 − ax3)(2.14)

= a2
[
f(x1 + x3) + f(x1 − x3) + f(x2 + x3) + f(x2 − x3)

]
+ 2f(x1 + x2)− 2a2

[
f(x1) + f(x2)

]
for all x1, x2, x3 ∈ X. If we replace x2 by −x2 in (2.14), we obtain by using the
oddness of f that

f(x1 − x2 + ax3) + f(x1 − x2 − ax3)(2.15)

= a2
[
f(x1 + x3) + f(x1 − x3)− f(x2 − x3)− f(x2 + x3)

]
+ 2f(x1 − x2)− 2a2

[
f(x1)− f(x2)

]
for all x1, x2, x3 ∈ X. Adding (2.14) to (2.15), we obtain (2.1). □

Theorem 2.2. A function f : X → Y satisfies the functional equation (1.3) if
and only if the function f : X → Y is cubic.

Proof. Let f be a function satisfying the functional equation (1.3). Putting
xi = 0 (i = 1, . . . , n) in (1.3), we have

2n−1(a31 − 1)f(0) = 0

that is, f(0) = 0 since a1 ̸= ±1. Setting xi = 0 (i = 2, . . . , n− 1) in (1.3) and
then using f(0) = 0, we get

2n−2
[
f(a1x1 + xn) + f(a1x1 − xn)

]
= 2n−2a1

[
f(x1 + xn) + f(x1 − xn) + 2(a21 − 1)f(x1)

]
that is,

f(a1x1 +xn)+ f(a1x1 −xn) = a1
[
f(x1 +xn)+ f(x1 −xn)

]
+2a1(a

2
1 − 1)f(x1)

for all x1, xn ∈ X. Hence f satisfies (1.2). Thus f is cubic.
Conversely, suppose that f is cubic. Now, we are going to prove that f

satisfies (1.3) by induction on |M | = n ≥ 2. It holds for n = 2, since f satisfies
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(1.2). Assume that it holds on the case where |M | = n ≥ 2. Thus f satisfies
(1.3). Since an = 1, it follows from (1.3) that

∑
I∈V
n∈I

f
(
xn +

∑
i∈I
i ̸=n

aixi −
∑
i∈Ic

aixi

)
+

∑
I∈V
n/∈I

f
(∑

i∈I

aixi −
∑
i∈Ic

i ̸=n

aixi − xn

)(2.16)

= 2n−2a1

n−1∑
i=2

a2i
[
f(x1 + xi) + f(x1 − xi)

]
+ 2n−1a1

(
a21 − 1−

n−1∑
i=2

a2i

)
f(x1)

+ 2n−2a1
[
f(x1 + xn) + f(x1 − xn)

]
for all x1, . . . , xn ∈ X. Letting bi = ai for all 1 ≤ i ≤ n − 1 and replacing xn

by bnxn + xn+1 in (2.16), we obtain

∑
I∈V
n∈I

f
(
bnxn + xn+1 +

∑
i∈I
i̸=n

bixi −
∑
i∈Ic

bixi

)(2.17)

+
∑
I∈V
n/∈I

f
(∑

i∈I

bixi −
∑
i∈Ic

i ̸=n

bixi − bnxn − xn+1

)

= 2n−2b1

n−1∑
i=2

b2i
[
f(x1 + xi) + f(x1 − xi)

]
+ 2n−1b1

(
b21 − 1−

n−1∑
i=2

b2i

)
f(x1)

+ 2n−2b1
[
f(x1 + bnxn + xn+1) + f(x1 − bnxn − xn+1)

]
for all x1, . . . , xn+1 ∈ X where bn is a non-zero integer. Replacing xn by −xn

in (2.17), we have

∑
I∈V
n∈I

f
(
− bnxn + xn+1 +

∑
i∈I
i ̸=n

bixi −
∑
i∈Ic

bixi

)(2.18)

+
∑
I∈V
n/∈I

f
(∑

i∈I

bixi −
∑
i∈Ic

i ̸=n

bixi + bnxn − xn+1

)

= 2n−2b1

n−1∑
i=2

b2i
[
f(x1 + xi) + f(x1 − xi)

]
+ 2n−1b1

(
b21 − 1−

n−1∑
i=2

b2i

)
f(x1)

+ 2n−2b1
[
f(x1 − bnxn + xn+1) + f(x1 + bnxn − xn+1)

]
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for all x1, . . . , xn+1 ∈ X. Let W :=
{
J ⊆ {1, 2, . . . , n + 1} : 1 ∈ J

}
and

bn+1 = 1. Then∑
I∈V
n∈I

{
f
(
bnxn + xn+1 +

∑
i∈I
i ̸=n

bixi −
∑
i∈Ic

bixi

)
+ f

(
− bnxn + xn+1 +

∑
i∈I
i ̸=n

bixi −
∑
i∈Ic

bixi

)}

+
∑
I∈V
n/∈I

{
f
(∑

i∈I

bixi −
∑
i∈Ic

i̸=n

bixi − bnxn − xn+1

)
+ f

(∑
i∈I

bixi −
∑
i∈Ic

i ̸=n

bixi + bnxn − xn+1

)}

=
∑
I∈V
n∈I

{
f
(
xn+1 +

∑
i∈I

bixi −
∑
i∈Ic

bixi

)
+ f

(
− bnxn + xn+1 +

∑
i∈I
i ̸=n

bixi −
∑
i∈Ic

bixi

)}

+
∑
I∈V
n/∈I

{
f
(
− xn+1 +

∑
i∈I

bixi −
∑
i∈Ic

bixi

)
+ f

(∑
i∈I

bixi −
∑
i∈Ic

i ̸=n

bixi + bnxn − xn+1

)}

=
∑
J∈W

f
(∑

i∈J

bixi −
∑
i∈Jc

bixi

)
.

Therefore adding (2.17) to (2.18), we get∑
J∈W

f
(∑

i∈J

bixi −
∑
i∈Jc

bixi

)
(2.19)

= 2n−1b1

n−1∑
i=2

b2i
[
f(x1 + xi) + f(x1 − xi)

]
+ 2nb1

(
b21 − 1−

n−1∑
i=2

b2i

)
f(x1)

+ 2n−2b1
[
f(x1 + xn+1 − bnxn) + f(x1 − xn+1 + bnxn)

+ f(x1 + xn+1 + bnxn) + f(x1 − xn+1 − bnxn)
]

for all x1, . . . , xn+1 ∈ X. Finally, it follows from (2.1) and (2.19) that∑
J∈W

f
(∑

i∈J

bixi −
∑
i∈Jc

bixi

)
= 2n−1b1

n+1∑
i=2

b2i
[
f(x1 + xi) + f(x1 − xi)

]
+ 2nb1

(
b21 −

n+1∑
i=2

b2i

)
f(x1)

for all x1, . . . , xn+1 ∈ X. Hence (1.3) holds for |M | = n+1. This completes the
proof. □

Remark 2.3. Using the proof of Theorem 2.2, we conclude that if f : X → Y
is a cubic function, then f satisfies (1.3) for a1, . . . , an ∈ Z with an = 1.

Theorem 2.4. Let f : X → Y be a cubic function and b1, . . . , bn ∈ Z. Then∑
I∈V

f
(∑

i∈I

bixi −
∑
i∈Ic

bixi

)
(2.20)
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= 2n−2b1

n∑
i=2

b2i
[
f(x1 + xi) + f(x1 − xi)

]
+ 2n−1b1

(
b21 −

n∑
i=2

b2i

)
f(x1)

for all x1, . . . , xn ∈ X.

Proof. Since f is cubic, f satisfies (2.20) when bn = 1. That is∑
I∈V
n∈I

f
(
xn +

∑
i∈I
i ̸=n

bixi −
∑
i∈Ic

bixi

)
+

∑
I∈V
n/∈I

f
(∑

i∈I

bixi −
∑
i∈Ic

i̸=n

bixi − xn

)
(2.21)

= 2n−2b1

n−1∑
i=2

b2i
[
f(x1 + xi) + f(x1 − xi)

]
+ 2n−2b1

[
f(x1 + xn) + f(x1 − xn)

]
+ 2n−1b1

(
b21 − 1−

n−1∑
i=2

b2i

)
f(x1)

for all x1, . . . , xn ∈ X. Replacing xn by bnxn in (2.21), we get∑
I∈V

f
(∑

i∈I

bixi −
∑
i∈Ic

bixi

)
(2.22)

= 2n−2b1

n−1∑
i=2

b2i
[
f(x1 + xi) + f(x1 − xi)

]
+ 2n−2b1

[
f(x1 + bnxn) + f(x1 − bnxn)

]
+ 2n−1b1

(
b21 − 1−

n−1∑
i=2

b2i

)
f(x1)

for all x1, . . . , xn ∈ X. Since f is cubic, f satisfies (2.2). Hence it follows from
(2.2) and (2.22) that f satisfies (2.20). □
Remark 2.5. Let f : R → R be a cubic function. If f is continuous at one point
or f is measurable, then f is continuous on R and f(x) = f(1)x3 for all x ∈ R
(see [12]).

3. Generalized Hyers–Ulam stability

Before obtaining the main results in this section, we firstly introduce some
useful concepts: we fix a real number β with 0 < β ≤ 1 and let K denote either
R or C. Let X be a linear space over K. A real-valued function ∥ · ∥β is called
a β–norm on X if and only if it satisfies

(βN1) ∥x∥β = 0 if and only if x = 0;
(βN2) ∥λx∥β = |λ|β . ∥x∥ for all λ ∈ K and all x ∈ X;
(βN3) ∥x+ y∥β ≤ ∥x∥β + ∥y∥β for all x, y ∈ X.

The pair (X, ∥ · ∥β) is called a β–normed space (see [2]). A β–Banach space is
a complete β–normed space.

Throughout this section, let B be a unital Banach algebra with norm | · |,
B1 = { a ∈ B : |a| = 1 }, X be a β–normed left B-module and Y be a β–normed
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left Banach B-module. Using the fixed point alternative of Cădariu and Radu
[3, 22], we will investigate the generalized Hyers–Ulam stability problem for
the functional equation (1.3). Thus we find the condition that there exists
a true cubic function near an approximately cubic function. We recall that
M = { 1, 2, . . . , n }, V = { I ⊆ M : 1 ∈ I } and Ic = M \ I. Let a1, . . . , an be
non-zero integers with a1 ̸= ±1, an = 1 and a21−

∑n
i=2 a

2
i ̸= 0. For convenience,

we use the following abbreviation for a given function f : X → Y :

Dbf(x1, . . . , xn) : =
∑
I∈V

f
(∑

i∈I

aibxi −
∑
i∈Ic

aibxi

)
− 2n−2a1

n∑
i=2

a2i
[
f(bx1 + bxi) + f(bx1 − bxi)

]
− 2n−1a1

(
a21 −

n∑
i=2

a2i

)
b3f(x1)

for all x1, . . . , xn ∈ X and b ∈ B1. We recall the following result by Margolis
and Diaz [16].

Theorem 3.1. Let (E, d) be a complete generalized metric space and let J :
E → E be a strictly contractive function with Lipschitz constant L < 1. Then
for each given element x ∈ E, either d(Jnx, Jn+1x) = ∞ for all nonnegative
integers n or there exists a non-negative integer n0 such that

(1) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = { y ∈ E : d(Jn0x, y) <

∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

Theorem 3.2. Let f : X → Y be a function with f(0) = 0 for which there
exists a function φ : Xn = X× X× · · · × X︸ ︷︷ ︸

n−times

→ [0,∞) such that

(3.1) ∥Dbf(x1, . . . , xn)∥β ≤ φ(x1, . . . , xn)

for all x1, . . . , xn ∈ X and all b ∈ B1. If there exists a constant 0 < L < 1 such
that

(3.2) φ(a1x1, . . . , a1xn) ≤ |a1|3βL φ(x1, . . . , xn)

for all x1, . . . , xn ∈ X, then there exists a unique cubic function C : X → Y
such that

(3.3) ∥f(x)− C(x)∥β ≤ 1

2(n−1)β |a1|3β(1− L)
φ(x, 0, . . . , 0︸ ︷︷ ︸

n−1

)

for all x ∈ X. Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ X,
then C is B-cubic, i.e., C(bx) = b3C(x) for all x ∈ X and all b ∈ B.
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Proof. It follows from (3.2) that

(3.4) lim
k→∞

1

|a1|3kβ
φ(ak1x1, . . . , a

k
1xn) = 0

for all x1, . . . , xn ∈ X. Letting x1 = x, x2 = x3 = · · · = xn = 0 and b = 1 in
(3.1) and using f(0) = 0, we get

(3.5) ∥f(a1x)− a31f(x)∥β ≤ 1

2(n−1)β
φ(x, 0, 0, . . . , 0)

for all x ∈ X. Let E be the set of all functions g : X → Y with g(0) = 0 and
introduce a generalized metric on E as follows:

d(g, h) := inf{K ∈ [0,∞] : ∥g(x)−h(x)∥β ≤ Kφ(x, 0, 0, . . . , 0) for all x ∈ X }.

It is easy to show that (E, d) is a generalized complete metric space (see the
Theorem 2.5 of [3]). Now we consider the function Λ : E → E defined by

(Λg)(x) =
1

a31
g(a1x) for all g ∈ E and x ∈ X.

Let g, h ∈ E and let K ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ K.
From the definition of d, we have

∥g(x)− h(x)∥β ≤ Kφ(x, 0, 0, . . . , 0)

for all x ∈ X. By the assumption and the last inequality, we have

∥(Λg)(x)− (Λh)(x)∥β =
1

|a1|3β
∥g(a1x)− h(a1x)∥β

≤ 1

|a1|3β
Kφ(a1x, 0, 0, . . . , 0) ≤ KLφ(x, 0, 0, . . . , 0)

for all x ∈ X. So
d(Λg,Λh) ≤ Ld(g, h)

for any g, h ∈ E. It follows from (3.5) that d(Λf, f) ≤ 1
2(n−1)β |a1|3β

. Therefore

according to Theorem 3.1, the sequence {Λkf} converges to a fixed point C of
Λ, i.e.,

C : X → Y, C(x) = lim
k→∞

(Λkf)(x) = lim
k→∞

1

a3k1
f(ak1x)

and C(a1x) = a31C(x) for all x ∈ X. Also C is the unique fixed point of Λ in
the set E∗ = {g ∈ E : d(f, g) < ∞} and

d(C, f) ≤ 1

1− L
d(Λf, f) ≤ 1

2(n−1)β |a1|3β(1− L)
,

i.e., inequality (3.3) holds true for all x ∈ X. It follows from the definition of
C, (3.1) and (3.4) that

∥D1C(x1, . . . , xn)∥β = lim
k→∞

1

|a1|3kβ
∥∥D1f(a

k
1x1, . . . , a

k
1xn)

∥∥
β
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≤ lim
k→∞

1

|a1|3kβ
φ(ak1x1, . . . , a

k
1xn) = 0

for all x1, . . . , xn ∈ X. By Theorem 2.2, the function C : X → Y is cubic.
Finally it remains to prove the uniqueness of C. Let T : X → Y be another
cubic function satisfying (3.3). Since d(f, T ) ≤ 1

2(n−1)β |a1|3β(1−L)
and T is cubic,

we get T ∈ E∗ and (ΛT )(x) = 1
a3
1
T (a1x) = T (x) for all x ∈ X, i.e., T is a fixed

point of Λ. Since C is the unique fixed point of Λ in E∗, then T = C.
Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ X, then by

the same reasoning as in the proof of [23] C is R-cubic. Setting x1 = x and
x2 = · · · = xn = 0 in (3.1), we get
(3.6)∥∥∥f(a1bx)− a1

n∑
i=2

a2i f(bx)− a1(a
2
1 −

n∑
i=2

a2i )b
3f(x)

∥∥∥
β
≤ 1

2(n−1)β
φ(x, 0, 0, . . . , 0)

for all x ∈ X and all b ∈ B1. By definition of C, (3.4) and (3.6), we obtain

C(a1bx)− a1

n∑
i=2

a2iC(bx)− a1(a
2
1 −

n∑
i=2

a2i )b
3C(x) = 0

for all x ∈ X and all b ∈ B1. Since C is cubic and a21 −
∑n

i=2 a
2
i ̸= 0, we get

C(bx) = b3C(x) for all x ∈ X and all b ∈ B1 ∪ {0}. Now, let b ∈ B \ {0}. Since
C is R-cubic,

C(bx) = C
(
|b|. b

|b|
x
)
= |b|3C

( b

|b|
x
)
= |b|3.

( b

|b|

)3

C(x) = b3C(x)

for all x ∈ X and all b ∈ B. This proves that C is B-cubic. □

Corollary 3.3. Let 0 < r < 3 and θ, δ be non-negative real numbers and let
f : X → Y be a function with f(0) = 0 such that

(3.7) ∥Dbf(x1, . . . , xn)∥β ≤ δ + θ
n∑

i=1

∥xi∥rβ

for all x1, . . . , xn ∈ X and all b ∈ B1. Then there exists a unique cubic function
C : X → Y such that

∥f(x)− C(x)∥β ≤ 1

2(n−1)β(|a1|3β − |a1|βr)
δ +

1

2(n−1)β(|a1|3β − |a1|βr)
θ∥x∥rβ

for all x ∈ X. Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ X,
then C is B-cubic.

Remark 3.4. Let f : X → Y be a function for which there exists a function
φ : Xn → [0,∞) satisfying (3.1). Let 0 < L < 1 be a constant such that
|a1|3βφ(x1, . . . , xn) ≤ Lφ(a1x1, . . . , a1xn) for all x1, . . . , xn ∈ X. f(0) = 0,
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since φ(0, . . . , 0) = 0. By a similar method to the proof of Theorem 3.2, one
can show that there exists a unique cubic function C : X → Y satisfying

∥f(x)− C(x)∥β ≤ L

2(n−1)β |a1|3β(1− L)
φ(x, 0, 0, . . . , 0)

for all x ∈ X. Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ X,
then C is B-cubic.

For the case φ(x1, . . . , xn) := θ
∑n

i=1 ∥xi∥r (where θ is a non-negative real
number and r > 3), there exists a unique cubic function C : X → Y satisfying

∥f(x)− C(x)∥β ≤ 1

2(n−1)β(|a1|βr − |a1|3β)
θ∥x∥rβ

for all x ∈ X.

Remark 3.5. Let f : X → Y be given and

D′
bf(x1, . . . , xn) : =

∑
I∈V

f
(∑

i∈I

aibxi −
∑
i∈Ic

aibxi

)
− 2n−2a1

n∑
i=2

a2i b
3
[
f(x1 + xi) + f(x1 − xi)

]
− 2n−1a1

(
a21 −

n∑
i=2

a2i

)
b3f(x1)

for all x1, . . . , xn ∈ X and b ∈ B1. Theorem 3.2 and Remark 3.4 hold true if
we replace Dbf(x1, . . . , xn) by D′

bf(x1, . . . , xn) in (3.1). In this case we do not
need the condition a21 −

∑n
i=2 a

2
i ̸= 0.

The generalized Hyers–Ulam stability problem for the case of r = 3 was
excluded in Corollary 3.3 and Remarks 3.4, 3.5. In fact, the functional equation
(1.3) is not stable for r = 3 in (3.7) as we shall see in the following example,
which is a modification of the example of Z. Gajda [6] for the additive functional
inequality.

Example 3.6. Let ϕ : C → C be defined by

ϕ(x) :=

{
x3 for |x| < 1;
1 for |x| ≥ 1.

Consider the function f : C → C by the formula

f(x) :=

∞∑
m=0

α−3mϕ(αmx),

where α > max{ |a1|, . . . , |an| } and a1, . . . , an are non-zero integers. Let

Dµf(x1, . . . , xn) : =
∑
I∈V

f
(∑

i∈I

aiµxi −
∑
i∈Ic

aiµxi

)
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− 2n−2a1

n∑
i=2

a2i
[
f(µx1 + µxi) + f(µx1 − µxi)

]
− 2n−1a1

(
a21 −

n∑
i=2

a2i

)
µ3f(x1),

D′
µf(x1, . . . , xn) : =

∑
I∈V

f
(∑

i∈I

aiµxi −
∑
i∈Ic

aiµxi

)
− 2n−2a1

n∑
i=2

a2iµ
3
[
f(x1 + xi) + f(x1 − xi)

]
− 2n−1a1

(
a21 −

n∑
i=2

a2i

)
µ3f(x1).

Then f satisfies

∥Dµf(x1, . . . , xn)∥ ≤ n2nα12

M3(α3 − 1)

n∑
i=1

|xi|3,(3.8)

∥D′
µf(x1, . . . , xn)∥ ≤ n2nα12

M3(α3 − 1)

n∑
i=1

|xi|3(3.9)

for all µ ∈ T := {λ ∈ C : |λ| = 1 }, all M ∈ (0, 1
n ) and all x1, . . . , xn ∈ C, and

the range of |f(x)−C(x)|/|x|3 for x ̸= 0 is unbounded for each cubic function
C : C → C.

Proof. It is enough to prove that f satisfies (3.8) and we have a similar proof

for (3.9). It is clear that f is bounded by α3

α3−1 on C. Let 0 < M < 1
n . If∑n

i=1 |aixi|3 = 0 or
∑n

i=1 |aixi|3 ≥ M3

α3 , then∣∣Dµf(x1, . . . , xn)
∣∣ ≤ 2n−1

[
1 + |a1|

n∑
i=2

|ai|2 + |a1|
∣∣∣a21 − n∑

i=2

a2i

∣∣∣] α3

α3 − 1

≤ n2n
α6

α3 − 1

≤ n2nα12

M3(α3 − 1)

n∑
i=1

|xi|3.

Now suppose that 0 <
∑n

i=1 |aixi|3 < M3

α3 . Then there exists an integer k ≥ 1
such that

(3.10)
M3

α3(k+1)
≤

n∑
i=1

|aixi|3 <
M3

α3k
.

Therefore

αm
∣∣∣∑
i∈I

aiµxi −
∑
i∈Ic

aiµxi

∣∣∣, αm|µx1 ± µxi|, αm|x1| < 1
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for all m = 0, 1, . . . , k − 1, i = 2, . . . , n and all I ∈ V. From the definition of f
and (3.10), we have∣∣Dµf(x1, . . . , xn)

∣∣
=

∣∣∣∣∑
I∈V

∞∑
m=k

α−3mϕ
(∑

i∈I

αmaiµxi −
∑
i∈Ic

αmaiµxi

)
− 2n−2a1

n∑
i=2

a2i

∞∑
m=k

α−3m
[
ϕ(αmµx1 + αmµxi) + ϕ(αmµx1 − αmµxi)

]
− 2n−1a1

(
a21 −

n∑
i=2

a2i

)
µ3

∞∑
m=k

α−3mϕ(αmx1)

∣∣∣∣
≤ 2n−1

[
1 + |a1|

n∑
i=2

|ai|2 + |a1|
∣∣∣a21 − n∑

i=2

a2i

∣∣∣] α3

α3k(α3 − 1)

≤ n2n
α6

α3k(α3 − 1)
≤ n2nα9

M3(α3 − 1)

n∑
i=1

|aixi|3 ≤ n2nα12

M3(α3 − 1)

n∑
i=1

|xi|3.

Therefore f satisfies (3.8). Let C : C → C be a cubic function such that

|f(x)− C(x)| ≤ β|x|3

for all x ∈ C. Then there exists a constant γ ∈ C such that C(x) = γx3 for all
rational numbers x. So we have

(3.11) |f(x)| ≤ (β + |c|)|x|3

for all rational numbers x. Let m ∈ N with m > β + |γ|. If x is a rational
number in (0, α1−m), then αkx ∈ (0, 1) for all k = 0, 1, . . . ,m− 1. So

f(x) ≥
m−1∑
k=0

α−3kϕ(αkx) = mx3 > (β + |γ|)x3

which contradicts (3.11). □
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[7] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately ad-

ditive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431–436.

[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27
(1941), 222–224.

[9] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several
Variables, Birkhäser, Basel, 1998.
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