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APPROXIMATION OF CUBIC MAPPINGS WITH
n-VARIABLES IN g-NORMED LEFT BANACH MODULES
ON BANACH ALGEBRAS

MaJip EsHAGHI GORDJI, HAMID KHODAEI, AND ABBAS NAJATI

ABSTRACT. Let M = {1,2,...,n}andlet V={I C M:1¢&I}. Denote
M\ by I¢ for I € V. The goal of this paper is to investigate the solution
and the stability using the alternative fixed point of generalized cubic
functional equation

> f(zaiﬂﬁi -> aﬂ»‘i)

Iey iel i€lc
n n
=221 Y a? [f(w1 + w0) + fla1 —20)] +2"Par (af = D0 aF) f(a)
i=2 i=2
in f-Banach modules on Banach algebras, where a1,...,an € Z \ {0}

with a1 # +1 and a,, = 1.

1. Introduction

We say a functional equation (§) is stable if any function g satisfying the
equation (§) approzimately is near to true solution of ().

The first stability problem concerning group homomorphisms was raised by
Ulam [26] in 1940 and affirmatively solved by Hyers [8]. Aoki [1] and Rassias
[23] provided a generalization of the Hyers theorem for additive and linear
functions, respectively, by allowing the Cauchy difference to be unbounded. In
1978, Th. M. Rassias [23] proved the following theorem.

Theorem 1.1. Let f : E — E’ be a function from a normed vector space E
into a Banach space E' subject to the inequality

(L.1) 1f(x+y) = fz) = FI < elll=]” + llyll”)
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for all x,y € E, where € and p are constants with ¢ > 0 and p < 1. Then there
exists a unique additive function T : E — E' such that

2€
2—2p

forallz € E. If p < 0, then the inequality (1.1) holds for all x,y # 0, and (1.2)
for x #£ 0. Also, if the function t — f(tx) from R into E' is continuous in real
t for each fized x € E, then T is linear.

(i

(1.2) 1f(z) = T(2)]| <

In 1991, Z. Gajda [6] answered the question for the case p > 1, which was
raised by Rassias. This new concept is known as Hyers-Ulam—Rassias stability
of functional equations. During the last decades several stability problems of
functional equations have been investigated in the spirt of Hyers—Ulam—Rassias.
See [4, 7, 9, 15, 24, 25] for more detailed information on stability of functional
equations.

Jun and Kim [10] introduced the following functional equation

(1].) f(2$1 —+ ZQ) + f(2$1 — ZQ) = 2f(£)']1 —+ IIZQ) —+ Qf(l’l — IL’Q) —+ 12f(£L'1)

and they established the general solution and the generalized Hyers—Ulam-—
Rassias stability for the functional equation (1.1). They proved that a function
f between real vector spaces X and Y is a solution of (1.1) if and only if there
exits a unique function C' : X x X x X — Y such that f(z) = C(z,z,x)
for all x € X, and C is symmetric for each fixed one variable and is additive
for fixed two variables. It is easy to see that the function f(z) = cz® satisfies
the functional equation (1.1), so it is natural to call (1.1) the cubic functional
equation and every solution of the cubic functional equation (1.1) is said to be
a cubic function.
Jun et al. [13] considered the following functional equation

(1.2) f(axi+z2)+ flaxy —x2) = a[f(xl +x2)+ f(x1 *ﬂfg)} +2a(a® —1)f(z1)

for any fixed integers a with a # 0,£1. In this case, we see the equivalence
of (1.1) and (1.2) (see [13]). Therefore, every solution of functional equations
(1.1) and (1.2) is a cubic function (See Theorem 2.2 of [13]). For other cubic
functional equations see [5], [12], [17]-[21].

Let M ={1,2,...,n}andlet V={I C M :1¢€I}. Denote M\I by I for
I € V. We will extend Eq. (1.2) to the general n-dimensional cubic functional
equation for n > 2:

(1.3) Z f(Zaixi — Z aixi) =2""2q Za? [f(z1 +23) + flz1 — ;)]
Iev el icle =2

+2" ay (a? - Zaf)f(:cl),

1=2
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where aq,...,a, € Z\{0} with a; # +1 and a,, = 1. Moreover, we will study the
stability of the given equation (1.3) in S~Banach module over Banach algebra
via fixed point method.
As a special case, if n = 2 in (1.3), then we get the functional equation (1.2).
Also, by putting n = 3 in (1.3), we obtain
flarzr — agze — x3) + far1x1 + aszs — x3)
+ fla1my + 23 — a2x2) + f(arz1 + azxs + x3)
= 2a;a3 [f(21 + 22) + flz1 — 22)] + 2a1 [ f(z1 + x3) + f(21 — 23)]
+dar(af — aj — 1) f(21).
2. General solution
Let both X and Y be real vector spaces. We here present the general solution
of (1.3).
Lemma 2.1. Let f: X — Y be a cubic function. Then f satisfies
(2.1)
flz1 + zo 4+ axs)+ f(z1 + 22 — ax3)+ f(z1 — 2 + ax3)+ f(x1 — 2 — ax3)
= 2[f(#1 4+ x2) + fz1 — 22)] + 20’ [f(z1 4 x3) + fz1 — 23)] — 4a® f(x1)
for all x1, x5, 23 € X, where a is an integer.
Proof. If a = 0, then it is clear. If a € {£1}, the general solution of (2.1)
is of the form f(x) = C(x) + A(x) + f(0), where C is a cubic mapping and
A is an additive mapping (see [11] and [14]). Hence f satisfies (2.1) since f
is cubic. Now, let a # 0,+1. Since f satisfies the functional equation (1.1),
putting 1 = x2 = 0 in (1.1), we get f(0) = 0. Setting 1 = 0 in (1.1) to
get f(—xz2) = —f(x2) for all zo € X. Letting zo = 0 in (1.1), we obtain that
f(2z1) = 8f(z1) forall z; € X. Also, f satisfies the functional equation (1.2) for
any integers a with a # 0, £1. Letting x5 = 0 in (1.2), we get f(ax1) = a®f(z1)
for all 1 € X. If we replace 3 by az in (1.2), it is easy to see that the equation
(1.2) can be written in the following way,

(2.2) f(x1+awe)+ f(z1—aws) = a® [f(x1+x2) + f (21— 22) | +2(1 = a®) f (1)

for all x1,zo € X. Replacing x; and z9 by 1 + 23 and x; — z9 in (1.2),
respectively, and using the identity f(2x) = 8f(z), we have

(2.3) F((a+ D+ (a— D)za) + F((a— Dy + (a+ Da)
= 8a[f(:£1) + f(xg)] +2a(a® — 1) f(z1 + z2)

for all 1,22 € X. Replacing z7 and zo by z1 + azz and z3 + axs in (2.3),
respectively, we have

(24)  f((a+ Dzy + (a — Va2 + 2a’z3) + f((a — D)zy + (a + )22 + 2a°z3)
= 8a[f(z1 + az3) + f(22 + axs)] + 2a*(a® — 1) f(z1 + 22 + 2az3)
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for all 21,9, 23 € X. Replacing 3 by —z3 in (2.4), we get
(25)  f((a+ Dz1 + (a — D)2z — 2a’z3) + f((a — )zy + (a + 1)z — 2a°z3)
= 8a|f(z1 — ax3) + f(x2 — axs)] + 2a(a® — 1) f(x1 + z2 — 2ax3)
for all z1,z2, 23 € X. Now, by adding (2.4) and (2.5), we have
(2.6)
f(la+ D)zy + (a — Do + 2a’z3) + f((a+ )21 + (a — 1)zs — 2a°z3)
+ f((a = D1 + (a+ L)z2 + 2a%23) + f((a — Dz1 + (a + 1)22 — 2a%x3)
= 8a[f(z1 + azs3) + f(z1 — axs) + f(za + axs) + f(za — axs)]
+ 2a(a® — 1)[f(x1 + 29 + 2ax3) + f(x1 + 20 — 2ax3)]

for all z1, 22,23 € X. On the other hand, if we substitute ;1 by x1 + ax3 and
x2 by T2 — axgz in (2.3), f satisfies

2.7 f((a+Dz1+ (a — Dz + 2az3) + f((a — )21 + (a + 1)z — 2az3)
= 8a[f(z1 + ax3) + f(22 — axs)| + 2a(a® — 1) f(z1 + x2)
for all z1,xq, 3 € X. Replacing x3 by —zx3 in (2.7), we get
(2.8)  f((a+1Dz1+ (a — Dz — 2az3) + f((a — )21 + (a + 1)z2 + 2azs3)
= 8a[f(x1 — axs) + f(wz + axs)] + 2a(a® — 1) f(x1 + x2)
for all z1,xq, 23 € X. Adding (2.7) to (2.8), we lead to
(2.9) f((a+ 1)z + (a — Dag + 2az3) + f((a+ 1)z1 + (a — 1)z — 2azx3)
+ f((a—1)z1 + (a+ a2 + 2ax3) + f((a — Dz1 + (a + 1)zg — 2az3)
= 8a [f(xl +ax3) + f(x1 — axs) + f(ze + axs) + f(x2 — aacg)]
+ 4a(a® — 1) f(z1 + 2)
for all z1,xq, x5 € X. Now, replacing x3 by axs in (2.9), we obtain
(2.10)
f(la+ D)zy + (a — Do + 2a’z3) + f((a+ )21 + (a — 1)zs — 2a°23)
+ f((a — Dy + (a+ 1)zg + 2d%z3) + f((a — Dz1 + (a + 1)zo — 2a°x3)
= 8a[f(z1 + a’x3) + f(z1 — a®x3) + f(za + a’x3) + f(a2 — a’xs)]
+4a(a® = 1) f(z1 + z2)
for all x1, 2,23 € X. If we compare (2.6) with (2.10), we conclude that
(2.11) 2a(a® — 1) [f(z1 + 22 + 2ax3) + f(21 + 22 — 2023)]
+ 8a[f(z1 + axs) + f(z1 — axs) + f(22 + axs) + f(z2 — axs)]
= 8al[f(z1 + a’zs) + f(z1 — a’xs) + f(xo + a’xs) + fla — a2333)]
+4a(a® = 1) f(z1 + z2)



APPROXIMATION OF CUBIC MAPPINGS WITH n-VARIABLES 1067

for all @1, z9,23 € X. Since (2.2) holds for all integers a, it follows from (2.2)
that

(2.12) flxy + @2 + 2ax3) + f(x1 + 2 — 2a23)
= 4[f($1 + a9+ ax3) + f(xy + 20 — aarg)] —6f(x1 + x2)
and
(2.13) fxy + a*x3) + f(x1 — a®x3) + f(xe + a®x3) + f(2xe — a’x3)

= a*[f(z1 + 23) + f(z1 — 23) + f(22 + 23) + fl22 — 23)]
+2(1 = a*)[f(21) + f(a2)]
for all z1,z2,x3 € X. It follows from (2.2), (2.11), (2.12) and (2.13) that
(2.14) flaz1 + x2 + axs3) + f(z1 + 22 — axs)
= a®[f(@1 4+ 23) + fz1 — 23) + f(22 + 23) + f22 — 23)]
+2f (21 + @2) — 2% [f (1) + f(22)]

for all z1,x9,x3 € X. If we replace x2 by —x2 in (2.14), we obtain by using the
oddness of f that

(2.15) flz1 — 22 + axs) + f(z1 — 22 — axs)
= a®[f(z1 4+ 23) + fz1 — 23) — f(22 — 23) — f(22 + 23)]
+ 2f (2 — 20) — 2a° [f(z1) — f(22)]
for all z1,z2, 23 € X. Adding (2.14) to (2.15), we obtain (2.1). O

Theorem 2.2. A function f: X — 'Y satisfies the functional equation (1.3) if
and only if the function f: X —Y is cubic.

Proof. Let f be a function satisfying the functional equation (1.3). Putting
;=0 (i=1,...,n) in (1.3), we have

2" (af — 1)f(0) =0
that is, f(0) = 0 since a; # £1. Setting ; =0 (i = 2,...,n— 1) in (1.3) and
then using f(0) = 0, we get
2" 2 [ flarz1 + @n) + flar@1 — 20)]
=2"2ay [f(z1 + xp) + f(21 — 2n) + 2(af — 1) f(21)]
that is,
flarzy +an) + flary — ) = a1 [f(z1 +20) + (21 — 20)] + 201 (a] — 1) f(21)

for all 21, x, € X. Hence f satisfies (1.2). Thus f is cubic.
Conversely, suppose that f is cubic. Now, we are going to prove that f
satisfies (1.3) by induction on |M| =n > 2. It holds for n = 2, since f satisfies
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(1.2). Assume that it holds on the case where |M| = n > 2. Thus f satisfies
(1.3). Since a,, = 1, it follows from (1.3) that

(2.16)
OVICNS WEED SURIED SO IED oy
Iey iel iele Iev el i€l®
nel i#En n¢l i#n
n—1
=2""2a Z fler+a) + flar — )] +2" (a% —1- Za?)f(xl)
i=2
+2" 2Cll [f(»’cl + xn) + f(z1 — 7))
for all z1,...,x, € X. Letting b; = a; for all 1 < i < n — 1 and replacing x,
by bpy, + ny1 in (2.16), we obtain
(2.17)
> f(bnivn t Ty Y biwi— Y bz‘ﬂfi)
Iey iel iele
nel i#n
+ Z f(z bix; — Z biz; — by, — $n+1)
Iev el iel®
n¢l i#n
n—1
= 2" 261 Z b2 1'1 -+ 1’1 + f(.’ﬂl — Cﬂi)] + 2“71b1 (b% —1-— Z b?)f(l’l)
i=2
2n le [f(xl + bnxn + anrl) + f(-rl - bnmn - $n+1)]
for all z1,...,z,4+1 € X where b, is a non-zero integer. Replacing z,, by —x,,

n (2.17), we have

(2.18)
Z f( —bpTy + Tpt1 + Zbﬂi - Z bil’i)
Iey iel iele
nel i#n
+Y f(z bii — Y biwi + b, — $n+1)
AN

n—1

=272, Z 03[ (o + @) + [ — @) + 2770 (87 = 1= 3 02) ()
=2

2n 2bl [f(xl - bnxn + xn+1) + f(xl + bnzn - zn+1)]
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for all z1,...,2,01 € X. Let W := {J c{L,2,....n+1}:1 € J} and
bn+1 = 1. Then

Z {f(bnl‘n + Tpt1 + Z bix; — Z bm) + f( —bpTp + Tpyr + Z bix; — Z bﬂz’) }

{lee]; ZZ§£L iele Z,?EJL i€le
{f Z b1=l77 - Z b111 - bnrn - -:L'n+1) + f(z b1=L7 - Z bzlv + bnxn - $n+l)}
7 e icl s
fl%\; “ ZSSI’L ' ZSSI’L
{f(ffn-s-l + Z bjx; — Z bixi) + f( = bnTp + Tpy1 + Z bjx; — Z bﬁi) }
Iey i€l i€le i€l i€le

nel i#En

{f — ZTpt1 + Zbﬂﬂz - Z bzl%) + f(zbﬂz - z biz; + by, — l‘n+1>}
Iey

el iele el i€l”
n¢l i#n
= E f( E bixi — E bll'l)
Jew icJ ieJe

Therefore adding (2.17) to (2.18), we get

(219) 3 F(Dbiwi— Y )

Jew ieJ icJe
n—1
=2""'p sz (1 +x3) + fo1 — 25)] +2nb1<b§ —1- Zb?)f(l’l)
i=2

2n 2bl [f(‘rl + Tn+1 — bnl'n) + f(xl — Tp+41 + bnxn)
+ f(xl + Tn+1 + bnmn) + f(xl — Tp41 — bnxn)]
for all zy,..., 2,41 € X. Finally, it follows from (2.1) and (2.19) that

Z f(zbixi - Z bifﬂi)

Jew el icJe
n+1 n+1
=2"" 1b12b2 (1 +x3) + fo1 — 25)] +2nb1(b% *be)f(zl)
i=2
for all z1,...,zp41 € X. Hence (1.3) holds for |M| = n+ 1. This completes the
proof. O

Remark 2.3. Using the proof of Theorem 2.2, we conclude that if f: X — Y
is a cubic function, then f satisfies (1.3) for aq,...,a, € Z with a,, = 1.

Theorem 2.4. Let f : X = Y be a cubic function and by,...,b, € Z. Then

(220) ST 7( D biwi = Y biai)

Ievy i€l i€le
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) Zzﬂ (w1 + @) + fl@r — 21)] + 27 1by (b2 Zzﬂ) 1)
=2
forallxl,...,anX.

Proof. Since f is cubic, f satisfies (2.20) when b, = 1. That is

(2.21) Zf(xn—i-bez Zbixi)—i—Zf(Zbixi—Zbixi—xn)

Iey i€l iele Iey el NS
nel i#n n¢l i#En

= 2" 2}, Zb2 (1 + ;) +f(x1—xi)}

n—1
272 [ ) + flan — )] 2070 (82— 1= 30 8) ()
1=2

for all z1,...,z, € X. Replacing z,, by b,z, in (2.21), we get

(2.22) Sr(Dbiwi = Y biai)

Iey i€l iele

= 2" 2blzb2 131+Z'z +f(l’1*351)]

2n 2bl [f(xl + bnmn) + f(xl - bnxn)}

n—1

+ 2 1p, (bf 13 bf)f(xl)
i=2
for all z1,...,z, € X. Since f is cubic, f satisfies (2.2). Hence it follows from
(2.2) and (2.22) that f satisfies (2.20). O

Remark 2.5. Let f : R — R be a cubic function. If f is continuous at one point
or f is measurable, then f is continuous on R and f(x) = f(1)z? for all z € R
(see [12]).

3. Generalized Hyers—Ulam stability

Before obtaining the main results in this section, we firstly introduce some
useful concepts: we fix a real number 5 with 0 < # < 1 and let K denote either
R or C. Let X be a linear space over K. A real-valued function || - || 5 is called
a 0—norm on X if and only if it satisfies

(BN1) ||z||g = 0 if and only if z = 0;

(BN2) || Az||g = |AP. ||z|| for all A € K and all z € X;

(BN3) ||z +yllg < |lzls + llyllp for all z,y € X.

The pair (X, | - ||g) is called a f—normed space (see [2]). A S—Banach space is
a complete S—normed space.

Throughout this section, let B be a unital Banach algebra with norm |- |,

By ={a€ B:l|a] =1}, Xbea fnormed left B-module and Y be a f—normed
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left Banach B-module. Using the fixed point alternative of Cadariu and Radu

[3, 22], we will investigate the generalized Hyers—Ulam stability problem for

the functional equation (1.3). Thus we find the condition that there exists

a true cubic function near an approximately cubic function. We recall that

M={12,....n},V={ICM:1€l}and I°=M\I. Let ay,...,a, be
no 9

non-zero integers with a; # £1,a, = 1 and a? —>_" , a? # 0. For convenience,

we use the following abbreviation for a given function f: X — Y :

Dypf(x1,...,2p): = Zf(Zaibxi - Zaibmi)

Iev el icle
— 2" %ay Y a7 [f(bxy + bw;) + f(bay — ba;)]
i=2
— ol (a% — Z af)be(xl)
i=2

for all z1,...,2, € X and b € B;. We recall the following result by Margolis
and Diaz [16].

Theorem 3.1. Let (E,d) be a complete generalized metric space and let J :
E — FE be a strictly contractive function with Lipschitz constant L < 1. Then
for each given element x € E, either d(J"x, J""2) = 0o for all nonnegative
integers n or there exists a non-negative integer ng such that

(1) d(J™z, J" ) < oo for all n > ng;

(2) the sequence {J"x} converges to a fixed point y* of J;

(3) y* is the unique fized point of J in the set Y ={y € E : d(J™x,y) <
00 };

(4) d(y,y*) < 2z d(y, Jy) for ally € Y.

Theorem 3.2. Let f : X — Y be a function with f(0) = 0 for which there
exists a function @ : X" =X x X x .- x X — [0,00) such that
—_—
n—times

(3.1) Do f(x1,.. . z0)llg < @(1,...,20)

forallxzy,...,z, € X and all b € By. If there exists a constant 0 < L < 1 such
that

(3.2) olar1xy, ..., 012,) < |a1|3BL o(x1, .., Tn)
for all x1,...,x, € X, then there exists a unique cubic function C : X — Y
such that
1
n—1

for all x € X. Moreover, if f(tx) is continuous in t € R for each fizred x € X,
then C is B-cubic, i.e., C(bx) = b3>C(z) for all z € X and all b € B.
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Proof. Tt follows from (3.2) that

: 1 k o\
(3.4) kl;n;o W@(alxl, s, a7T,) =0
for all z1,...,x, € X. Letting 1 =z, 20 =23 ==z, =0and b=1in
(3.1) and using f(0) = 0, we get
1

for all x € X. Let E be the set of all functions g : X — Y with ¢g(0) = 0 and
introduce a generalized metric on F as follows:

d(g,h) :==inf{ K € [0,00] : ||g(z)—h(x)|g < K¢(z,0,0,...,0) forall zeX}.

It is easy to show that (F,d) is a generalized complete metric space (see the
Theorem 2.5 of [3]). Now we consider the function A : E — E defined by

1
(Ag)(x) = Eg(alx) for all g € F and z € X.
1

Let g,h € E and let K € [0,00] be an arbitrary constant with d(g,h) < K.
From the definition of d, we have

||g(m) - h(CU)Hg < K(p($7070, s 70)

for all x € X. By the assumption and the last inequality, we have
1
[(Ag)(z) — (AR)(x)]ls = Wllg(dlx) — h(a1z)||s

< WK@(alx,O,O,...,O) < KLy(z,0,0,...,0)

for all x € X. So
d(Ag, Ah) < Ld(g, h)
for any g,h € E. It follows from (3.5) that d(Af, f) < m Therefore
according to Theorem 3.1, the sequence {A* f} converges to a fixed point C of
A ie.,
1
C:X—=Y, C(z)= lim (A*f)(z) = lim Wf(a’f;v)
k—o0 ’

k— o0 ay

and C(ayz) = a3C(x) for all z € X. Also C is the unique fixed point of A in
the set E* ={g € E:d(f,g) <>} and

1 1
d(C, f) < ——d(A < ,
i.e., inequality (3.3) holds true for all z € X. It follows from the definition of

C, (3.1) and (3.4) that

. 1
ID1C (21, ..., z0)|lg = klggo WHle(a’th .. ,a’fxn)Hﬁ



APPROXIMATION OF CUBIC MAPPINGS WITH n-VARIABLES 1073

< lim

k k
< ayxi,...,aicy) =0
k—o0

ol
a7
for all z1,...,2, € X. By Theorem 2.2, the function C' : X — Y is cubic.
Finally it remains to prove the uniqueness of C. Let T : X — Y be another
cubic function satisfying (3.3). Since d(f,T") < m and T is cubic,
we get T € E* and (AT)(x) = G%T(alx) =T(z) for all x € X, i.e., T is a fixed
point of A. Since C' is the unique fixed point of A in E*, then T = C.

Moreover, if f(tx) is continuous in ¢t € R for each fixed z € X, then by
the same reasoning as in the proof of [23] C is R-cubic. Setting 1 = = and

Tg=---=uz, =01in (3.1), we get

(3.6)
n n 1

| Farbe) — a1 3" a2 f(bw) —araf = Y- a1 @) || < grmppee.0.0.....0)
=2 =2

for all x € X and all b € B;. By definition of C, (3.4) and (3.6), we obtain

n

C(a1bz) — a; Za?C(bx) —ay(a? — Za?)b:‘C(x) =0
i=2 i=2
for all x € X and all b € B;. Since C is cubic and af — Y"1 , a? # 0, we get

C(bx) = b*C(z) for all x € X and all b € B; U{0}. Now, let b € B\ {0}. Since
C' is R-cubic,

_ DN el PN s (2 _ 13
C(bx)—C(|b|.‘b|x) Y c(wx) — o] .(|b|) O(z) = B*C(x)
for all x € X and all b € B. This proves that C' is B-cubic. O

Corollary 3.3. Let 0 < r < 3 and 0,0 be non-negative real numbers and let
f: X =Y be a function with f(0) =0 such that

(3.7) IDof (@1, s zn)llp <5 +0 ) ||zl
i=1
forallzy,...,z, € X and allb € By. Then there exists a unique cubic function

C: X =Y such that

1 1
-C < )
||f(l‘) (90)”/3 = 2(”—1)5(|a1|35 _ |a1|6'r) + 2(n—1)5(‘a1|3,3 _ |a1|ﬁr)

0=l

for all x € X. Moreover, if f(tx) is continuous in t € R for each fized x € X,
then C is B-cubic.

Remark 3.4. Let f : X — Y be a function for which there exists a function
¢ : X" — [0,00) satisfying (3.1). Let 0 < L < 1 be a constant such that
la1 [P (21, ... 2n) < Lo(arxy,...,a1x,) for all zy,...,2, € X. f(0) = 0,
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since ©(0,...,0) = 0. By a similar method to the proof of Theorem 3.2, one
can show that there exists a unique cubic function C' : X — Y satisfying

L
15) = C@)ls < grmmaga =gy P 000

for all z € X. Moreover, if f(tx) is continuous in ¢ € R for each fixed = € X,
then C' is B-cubic.

For the case p(21,...,2,) := 0> ., ||@;||” (where 0 is a non-negative real
number and r > 3), there exists a unique cubic function C : X — Y satisfying

1
1f(z) = C(z)|s < 20015 (|ay |P" — |a [2F)

0=l

for all x € X.
Remark 3.5. Let f: X — Y be given and

DI/).f(xla c. ,xn) L= Z f(z aiba:i — Z a,bxl)

Iey i€l icle

— 2" 2qy Z aib®[f(z1 4+ z) + fz1 — 2;)]
i=2

— 2" gy (a% — Zn: a?)b?’f(xl)

=2

for all z1,...,z, € X and b € By. Theorem 3.2 and Remark 3.4 hold true if
we replace Dy f(z1,...,2,) by Dy f(x1,...,2y,) in (3.1). In this case we do not
need the condition af — Y"1, a? # 0.

The generalized Hyers—Ulam stability problem for the case of r = 3 was
excluded in Corollary 3.3 and Remarks 3.4, 3.5. In fact, the functional equation
(1.3) is not stable for r = 3 in (3.7) as we shall see in the following example,
which is a modification of the example of Z. Gajda [6] for the additive functional
inequality.

Example 3.6. Let ¢ : C — C be defined by

3 for x| < 1;

¢z) = { 1 for |z| > 1.
Consider the function f : C — C by the formula

f(x):= Y a ¥ g(a™a),
m=0

where a > max{|ai|,...,|an|} and a4, ..., a, are non-zero integers. Let

D, f(z1,...,2n): = Zf(Zaiu:ri — Zai,umi)

Iey i€l iele
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n

— 2" 2qy Z a; [f(paey + ps) + f(pay — pag)]
i=2

—2n~ g, (a% - Za?)/jf?)f(xl)v
i=2
D;f(xl, e Tp) L= Zf(Zaiuxi — Z aiumi>

Iey i€l iele

— 2" 2qy Z a;p’ [f (21 + i) + flzr — ;)]
i—2

n

— 2" gy (a% - Z a?);ﬁf(xl).

=2
Then f satisfies
7’L2nCJé12 n 3
(3.8) [Duf (1, @)l < WBE 1) ; |2il”,
, n2na12 n 3

forall pe T:={AeC:|A\=1},all M €(0,2) and all z1,...,, € C, and
the range of |f(x) — C(z)|/|z|? for x # 0 is unbounded for each cubic function
Cc:C—C.

Proof. Tt is enough to prove that f satisfies (3.8) and we have a similar proof
for (3.9). It is clear that f is bounded by a?—il on C. Let 0 < M < L1 If

P 3
Z:‘L:I |a¢xi|3 = 0 or Z?:l |aix¢\3 Z %, then
=
ad —1

n n
[Duf (@) <27 [T+l il + farljad = 3 a?
=2 =2

6

<n2"
- o3 —1
n

n2na12 3
< M3(a® — 1) Z -
i=1

Now suppose that 0 < >0 | |a;z;]® < %—; Then there exists an integer k > 1
such that

M3 n 3 M3

=1

am‘ Zammi - Z ;]

icl iele

Therefore

ca ™ pxy £ pxg], o™z < 1
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forallm=0,1,...,k—1, i=2,...,nand all I € V. From the definition of f
and (3.10), we have

|Dyuf (1, 20)|
oo
= Z Z a‘gmqb(z:amai,uxi - Z Oémai/wi)
1€V m=k il icle

— 2" 2qy Z a? Z o PG pry + " pxy) + dla™ pwy — o pw;)]

=2 m=k
n
2" 1, (a% - Zaf),u?’ Z a3 p(a™ )
1=2 m=k
<2 i+l Yl +Jonlfo = 3 o] e
i=2 i=2
6 n 9 n n 12 n
o n2"«a n2"a
< n2" < i} < 1
=" k(0P — 1) = M3(ad — 1) ; lail” < 350s -1y ; il

Therefore f satisfies (3.8). Let C': C — C be a cubic function such that

/(@) = C ()| < Blaf’

for all z € C. Then there exists a constant v € C such that C(x) = v for all
rational numbers z. So we have

(3.11) [f(@)] < (B +eD]zf®

for all rational numbers . Let m € N with m > g + |v|. If  is a rational
number in (0, «'~™), then ofx € (0,1) for all k =0,1,...,m — 1. So
m—1
flw) = ) a*Fo(afa) = ma® > (B + |y])2®
k=0
which contradicts (3.11). O
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