APPROXIMATION OF CUBIC MAPPINGS WITH n-VARIABLES IN β-NORMED LEFT BANACH MODULES ON BANACH ALGEBRAS

Majid Eshaghi Gordji, Hamid Khodaei, and Abbas Najati

$$
\begin{aligned}
& \text { AbSTRACT. Let } M=\{1,2, \ldots, n\} \text { and let } \mathcal{V}=\{I \subseteq M: 1 \in I\} \text {. Denote } \\
& M \backslash I \text { by } I^{c} \text { for } I \in \mathcal{V} \text {. The goal of this paper is to investigate the solution } \\
& \text { and the stability using the alternative fixed point of generalized cubic } \\
& \text { functional equation } \\
& \qquad \sum_{I \in \mathcal{V}} f\left(\sum_{i \in I} a_{i} x_{i}-\sum_{i \in I^{c}} a_{i} x_{i}\right) \\
& =2^{n-2} a_{1} \sum_{i=2}^{n} a_{i}^{2}\left[f\left(x_{1}+x_{i}\right)+f\left(x_{1}-x_{i}\right)\right]+2^{n-1} a_{1}\left(a_{1}^{2}-\sum_{i=2}^{n} a_{i}^{2}\right) f\left(x_{1}\right)
\end{aligned}
$$

in β-Banach modules on Banach algebras, where $a_{1}, \ldots, a_{n} \in \mathbb{Z} \backslash\{0\}$ with $a_{1} \neq \pm 1$ and $a_{n}=1$.

1. Introduction

We say a functional equation (ξ) is stable if any function g satisfying the equation (ξ) approximately is near to true solution of (ξ).

The first stability problem concerning group homomorphisms was raised by Ulam [26] in 1940 and affirmatively solved by Hyers [8]. Aoki [1] and Rassias [23] provided a generalization of the Hyers theorem for additive and linear functions, respectively, by allowing the Cauchy difference to be unbounded. In 1978, Th. M. Rassias [23] proved the following theorem.

Theorem 1.1. Let $f: E \longrightarrow E^{\prime}$ be a function from a normed vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

[^0]for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then there exists a unique additive function $T: E \longrightarrow E^{\prime}$ such that
\[

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

\]

for all $x \in E$. If $p<0$, then the inequality (1.1) holds for all $x, y \neq 0$, and (1.2) for $x \neq 0$. Also, if the function $t \mapsto f(t x)$ from \mathbb{R} into E^{\prime} is continuous in real t for each fixed $x \in E$, then T is linear.

In 1991, Z. Gajda [6] answered the question for the case $p>1$, which was raised by Rassias. This new concept is known as Hyers-Ulam-Rassias stability of functional equations. During the last decades several stability problems of functional equations have been investigated in the spirt of Hyers-Ulam-Rassias. See $[4,7,9,15,24,25]$ for more detailed information on stability of functional equations.

Jun and Kim [10] introduced the following functional equation

$$
\begin{equation*}
f\left(2 x_{1}+x_{2}\right)+f\left(2 x_{1}-x_{2}\right)=2 f\left(x_{1}+x_{2}\right)+2 f\left(x_{1}-x_{2}\right)+12 f\left(x_{1}\right) \tag{1.1}
\end{equation*}
$$

and they established the general solution and the generalized Hyers-UlamRassias stability for the functional equation (1.1). They proved that a function f between real vector spaces X and Y is a solution of (1.1) if and only if there exits a unique function $C: X \times X \times X \longrightarrow Y$ such that $f(x)=C(x, x, x)$ for all $x \in X$, and C is symmetric for each fixed one variable and is additive for fixed two variables. It is easy to see that the function $f(x)=c x^{3}$ satisfies the functional equation (1.1), so it is natural to call (1.1) the cubic functional equation and every solution of the cubic functional equation (1.1) is said to be a cubic function.

Jun et al. [13] considered the following functional equation
(1.2) $f\left(a x_{1}+x_{2}\right)+f\left(a x_{1}-x_{2}\right)=a\left[f\left(x_{1}+x_{2}\right)+f\left(x_{1}-x_{2}\right)\right]+2 a\left(a^{2}-1\right) f\left(x_{1}\right)$
for any fixed integers a with $a \neq 0, \pm 1$. In this case, we see the equivalence of (1.1) and (1.2) (see [13]). Therefore, every solution of functional equations (1.1) and (1.2) is a cubic function (See Theorem 2.2 of [13]). For other cubic functional equations see [5], [12], [17]-[21].

Let $M=\{1,2, \ldots, n\}$ and let $\mathcal{V}=\{I \subseteq M: 1 \in I\}$. Denote $M \backslash I$ by I^{c} for $I \in \mathcal{V}$. We will extend Eq. (1.2) to the general n-dimensional cubic functional equation for $n \geq 2$:

$$
\begin{align*}
\sum_{I \in \mathcal{V}} f\left(\sum_{i \in I} a_{i} x_{i}-\sum_{i \in I^{c}} a_{i} x_{i}\right)= & 2^{n-2} a_{1} \sum_{i=2}^{n} a_{i}^{2}\left[f\left(x_{1}+x_{i}\right)+f\left(x_{1}-x_{i}\right)\right] \tag{1.3}\\
& +2^{n-1} a_{1}\left(a_{1}^{2}-\sum_{i=2}^{n} a_{i}^{2}\right) f\left(x_{1}\right)
\end{align*}
$$

where $a_{1}, \ldots, a_{n} \in \mathbb{Z} \backslash\{0\}$ with $a_{1} \neq \pm 1$ and $a_{n}=1$. Moreover, we will study the stability of the given equation (1.3) in β-Banach module over Banach algebra via fixed point method.

As a special case, if $n=2$ in (1.3), then we get the functional equation (1.2). Also, by putting $n=3$ in (1.3), we obtain

$$
\begin{aligned}
& f\left(a_{1} x_{1}-a_{2} x_{2}-x_{3}\right)+f\left(a_{1} x_{1}+a_{2} x_{2}-x_{3}\right) \\
& +f\left(a_{1} x_{1}+x_{3}-a_{2} x_{2}\right)+f\left(a_{1} x_{1}+a_{2} x_{2}+x_{3}\right) \\
= & 2 a_{1} a_{2}^{2}\left[f\left(x_{1}+x_{2}\right)+f\left(x_{1}-x_{2}\right)\right]+2 a_{1}\left[f\left(x_{1}+x_{3}\right)+f\left(x_{1}-x_{3}\right)\right] \\
& +4 a_{1}\left(a_{1}^{2}-a_{2}^{2}-1\right) f\left(x_{1}\right) .
\end{aligned}
$$

2. General solution

Let both X and Y be real vector spaces. We here present the general solution of (1.3).

Lemma 2.1. Let $f: X \rightarrow Y$ be a cubic function. Then f satisfies

$$
\begin{equation*}
f\left(x_{1}+x_{2}+a x_{3}\right)+f\left(x_{1}+x_{2}-a x_{3}\right)+f\left(x_{1}-x_{2}+a x_{3}\right)+f\left(x_{1}-x_{2}-a x_{3}\right) \tag{2.1}
\end{equation*}
$$

$=2\left[f\left(x_{1}+x_{2}\right)+f\left(x_{1}-x_{2}\right)\right]+2 a^{2}\left[f\left(x_{1}+x_{3}\right)+f\left(x_{1}-x_{3}\right)\right]-4 a^{2} f\left(x_{1}\right)$
for all $x_{1}, x_{2}, x_{3} \in X$, where a is an integer.
Proof. If $a=0$, then it is clear. If $a \in\{ \pm 1\}$, the general solution of (2.1) is of the form $f(x)=C(x)+A(x)+f(0)$, where C is a cubic mapping and A is an additive mapping (see [11] and [14]). Hence f satisfies (2.1) since f is cubic. Now, let $a \neq 0, \pm 1$. Since f satisfies the functional equation (1.1), putting $x_{1}=x_{2}=0$ in (1.1), we get $f(0)=0$. Setting $x_{1}=0$ in (1.1) to get $f\left(-x_{2}\right)=-f\left(x_{2}\right)$ for all $x_{2} \in X$. Letting $x_{2}=0$ in (1.1), we obtain that $f\left(2 x_{1}\right)=8 f\left(x_{1}\right)$ for all $x_{1} \in X$. Also, f satisfies the functional equation (1.2) for any integers a with $a \neq 0, \pm 1$. Letting $x_{2}=0$ in (1.2), we get $f\left(a x_{1}\right)=a^{3} f\left(x_{1}\right)$ for all $x_{1} \in X$. If we replace x_{2} by $a x_{2}$ in (1.2), it is easy to see that the equation (1.2) can be written in the following way,
(2.2) $f\left(x_{1}+a x_{2}\right)+f\left(x_{1}-a x_{2}\right)=a^{2}\left[f\left(x_{1}+x_{2}\right)+f\left(x_{1}-x_{2}\right)\right]+2\left(1-a^{2}\right) f\left(x_{1}\right)$
for all $x_{1}, x_{2} \in X$. Replacing x_{1} and x_{2} by $x_{1}+x_{2}$ and $x_{1}-x_{2}$ in (1.2), respectively, and using the identity $f(2 x)=8 f(x)$, we have

$$
\begin{align*}
& f\left((a+1) x_{1}+(a-1) x_{2}\right)+f\left((a-1) x_{1}+(a+1) x_{2}\right) \tag{2.3}\\
= & 8 a\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]+2 a\left(a^{2}-1\right) f\left(x_{1}+x_{2}\right)
\end{align*}
$$

for all $x_{1}, x_{2} \in X$. Replacing x_{1} and x_{2} by $x_{1}+a x_{3}$ and $x_{2}+a x_{3}$ in (2.3), respectively, we have

$$
\begin{align*}
& f\left((a+1) x_{1}+(a-1) x_{2}+2 a^{2} x_{3}\right)+f\left((a-1) x_{1}+(a+1) x_{2}+2 a^{2} x_{3}\right) \tag{2.4}\\
= & 8 a\left[f\left(x_{1}+a x_{3}\right)+f\left(x_{2}+a x_{3}\right)\right]+2 a^{2}\left(a^{2}-1\right) f\left(x_{1}+x_{2}+2 a x_{3}\right)
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3} \in X$. Replacing x_{3} by $-x_{3}$ in (2.4), we get

$$
\begin{align*}
& f\left((a+1) x_{1}+(a-1) x_{2}-2 a^{2} x_{3}\right)+f\left((a-1) x_{1}+(a+1) x_{2}-2 a^{2} x_{3}\right) \tag{2.5}\\
= & 8 a\left[f\left(x_{1}-a x_{3}\right)+f\left(x_{2}-a x_{3}\right)\right]+2 a\left(a^{2}-1\right) f\left(x_{1}+x_{2}-2 a x_{3}\right)
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3} \in X$. Now, by adding (2.4) and (2.5), we have

$$
\begin{align*}
& f\left((a+1) x_{1}+(a-1) x_{2}+2 a^{2} x_{3}\right)+f\left((a+1) x_{1}+(a-1) x_{2}-2 a^{2} x_{3}\right) \tag{2.6}\\
& +f\left((a-1) x_{1}+(a+1) x_{2}+2 a^{2} x_{3}\right)+f\left((a-1) x_{1}+(a+1) x_{2}-2 a^{2} x_{3}\right) \\
= & 8 a\left[f\left(x_{1}+a x_{3}\right)+f\left(x_{1}-a x_{3}\right)+f\left(x_{2}+a x_{3}\right)+f\left(x_{2}-a x_{3}\right)\right] \\
& +2 a\left(a^{2}-1\right)\left[f\left(x_{1}+x_{2}+2 a x_{3}\right)+f\left(x_{1}+x_{2}-2 a x_{3}\right)\right]
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3} \in X$. On the other hand, if we substitute x_{1} by $x_{1}+a x_{3}$ and x_{2} by $x_{2}-a x_{3}$ in (2.3), f satisfies

$$
\begin{align*}
& f\left((a+1) x_{1}+(a-1) x_{2}+2 a x_{3}\right)+f\left((a-1) x_{1}+(a+1) x_{2}-2 a x_{3}\right) \tag{2.7}\\
= & 8 a\left[f\left(x_{1}+a x_{3}\right)+f\left(x_{2}-a x_{3}\right)\right]+2 a\left(a^{2}-1\right) f\left(x_{1}+x_{2}\right)
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3} \in X$. Replacing x_{3} by $-x_{3}$ in (2.7), we get

$$
\begin{align*}
& f\left((a+1) x_{1}+(a-1) x_{2}-2 a x_{3}\right)+f\left((a-1) x_{1}+(a+1) x_{2}+2 a x_{3}\right) \tag{2.8}\\
= & 8 a\left[f\left(x_{1}-a x_{3}\right)+f\left(x_{2}+a x_{3}\right)\right]+2 a\left(a^{2}-1\right) f\left(x_{1}+x_{2}\right)
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3} \in X$. Adding (2.7) to (2.8), we lead to

$$
\begin{align*}
& f\left((a+1) x_{1}+(a-1) x_{2}+2 a x_{3}\right)+f\left((a+1) x_{1}+(a-1) x_{2}-2 a x_{3}\right) \tag{2.9}\\
& +f\left((a-1) x_{1}+(a+1) x_{2}+2 a x_{3}\right)+f\left((a-1) x_{1}+(a+1) x_{2}-2 a x_{3}\right) \\
= & 8 a\left[f\left(x_{1}+a x_{3}\right)+f\left(x_{1}-a x_{3}\right)+f\left(x_{2}+a x_{3}\right)+f\left(x_{2}-a x_{3}\right)\right] \\
& +4 a\left(a^{2}-1\right) f\left(x_{1}+x_{2}\right)
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3} \in X$. Now, replacing x_{3} by $a x_{3}$ in (2.9), we obtain

$$
\begin{align*}
& f\left((a+1) x_{1}+(a-1) x_{2}+2 a^{2} x_{3}\right)+f\left((a+1) x_{1}+(a-1) x_{2}-2 a^{2} x_{3}\right) \tag{2.10}\\
& +f\left((a-1) x_{1}+(a+1) x_{2}+2 a^{2} x_{3}\right)+f\left((a-1) x_{1}+(a+1) x_{2}-2 a^{2} x_{3}\right) \\
= & 8 a\left[f\left(x_{1}+a^{2} x_{3}\right)+f\left(x_{1}-a^{2} x_{3}\right)+f\left(x_{2}+a^{2} x_{3}\right)+f\left(x_{2}-a^{2} x_{3}\right)\right] \\
& +4 a\left(a^{2}-1\right) f\left(x_{1}+x_{2}\right)
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3} \in X$. If we compare (2.6) with (2.10), we conclude that

$$
\begin{align*}
& 2 a\left(a^{2}-1\right)\left[f\left(x_{1}+x_{2}+2 a x_{3}\right)+f\left(x_{1}+x_{2}-2 a x_{3}\right)\right] \tag{2.11}\\
& +8 a\left[f\left(x_{1}+a x_{3}\right)+f\left(x_{1}-a x_{3}\right)+f\left(x_{2}+a x_{3}\right)+f\left(x_{2}-a x_{3}\right)\right] \\
= & 8 a\left[f\left(x_{1}+a^{2} x_{3}\right)+f\left(x_{1}-a^{2} x_{3}\right)+f\left(x_{2}+a^{2} x_{3}\right)+f\left(x_{2}-a^{2} x_{3}\right)\right] \\
& +4 a\left(a^{2}-1\right) f\left(x_{1}+x_{2}\right)
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3} \in X$. Since (2.2) holds for all integers a, it follows from (2.2) that

$$
\begin{align*}
& f\left(x_{1}+x_{2}+2 a x_{3}\right)+f\left(x_{1}+x_{2}-2 a x_{3}\right) \tag{2.12}\\
= & 4\left[f\left(x_{1}+x_{2}+a x_{3}\right)+f\left(x_{1}+x_{2}-a x_{3}\right)\right]-6 f\left(x_{1}+x_{2}\right)
\end{align*}
$$

and

$$
\begin{align*}
& f\left(x_{1}+a^{2} x_{3}\right)+f\left(x_{1}-a^{2} x_{3}\right)+f\left(x_{2}+a^{2} x_{3}\right)+f\left(x_{2}-a^{2} x_{3}\right) \tag{2.13}\\
= & a^{4}\left[f\left(x_{1}+x_{3}\right)+f\left(x_{1}-x_{3}\right)+f\left(x_{2}+x_{3}\right)+f\left(x_{2}-x_{3}\right)\right] \\
& +2\left(1-a^{4}\right)\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3} \in X$. It follows from (2.2), (2.11), (2.12) and (2.13) that

$$
\begin{align*}
& f\left(x_{1}+x_{2}+a x_{3}\right)+f\left(x_{1}+x_{2}-a x_{3}\right) \tag{2.14}\\
= & a^{2}\left[f\left(x_{1}+x_{3}\right)+f\left(x_{1}-x_{3}\right)+f\left(x_{2}+x_{3}\right)+f\left(x_{2}-x_{3}\right)\right] \\
& +2 f\left(x_{1}+x_{2}\right)-2 a^{2}\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3} \in X$. If we replace x_{2} by $-x_{2}$ in (2.14), we obtain by using the oddness of f that

$$
\begin{align*}
& f\left(x_{1}-x_{2}+a x_{3}\right)+f\left(x_{1}-x_{2}-a x_{3}\right) \tag{2.15}\\
= & a^{2}\left[f\left(x_{1}+x_{3}\right)+f\left(x_{1}-x_{3}\right)-f\left(x_{2}-x_{3}\right)-f\left(x_{2}+x_{3}\right)\right] \\
& +2 f\left(x_{1}-x_{2}\right)-2 a^{2}\left[f\left(x_{1}\right)-f\left(x_{2}\right)\right]
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3} \in X$. Adding (2.14) to (2.15), we obtain (2.1).
Theorem 2.2. A function $f: X \rightarrow Y$ satisfies the functional equation (1.3) if and only if the function $f: X \rightarrow Y$ is cubic.
Proof. Let f be a function satisfying the functional equation (1.3). Putting $x_{i}=0(i=1, \ldots, n)$ in (1.3), we have

$$
2^{n-1}\left(a_{1}^{3}-1\right) f(0)=0
$$

that is, $f(0)=0$ since $a_{1} \neq \pm 1$. Setting $x_{i}=0(i=2, \ldots, n-1)$ in (1.3) and then using $f(0)=0$, we get

$$
\begin{aligned}
& 2^{n-2}\left[f\left(a_{1} x_{1}+x_{n}\right)+f\left(a_{1} x_{1}-x_{n}\right)\right] \\
= & 2^{n-2} a_{1}\left[f\left(x_{1}+x_{n}\right)+f\left(x_{1}-x_{n}\right)+2\left(a_{1}^{2}-1\right) f\left(x_{1}\right)\right]
\end{aligned}
$$

that is,
$f\left(a_{1} x_{1}+x_{n}\right)+f\left(a_{1} x_{1}-x_{n}\right)=a_{1}\left[f\left(x_{1}+x_{n}\right)+f\left(x_{1}-x_{n}\right)\right]+2 a_{1}\left(a_{1}^{2}-1\right) f\left(x_{1}\right)$ for all $x_{1}, x_{n} \in X$. Hence f satisfies (1.2). Thus f is cubic.

Conversely, suppose that f is cubic. Now, we are going to prove that f satisfies (1.3) by induction on $|M|=n \geq 2$. It holds for $n=2$, since f satisfies
(1.2). Assume that it holds on the case where $|M|=n \geq 2$. Thus f satisfies (1.3). Since $a_{n}=1$, it follows from (1.3) that

$$
\begin{align*}
& \sum_{\substack{I \in \mathcal{V} \\
n \in I}} f\left(x_{n}+\sum_{\substack{i \in I \\
i \neq n}} a_{i} x_{i}-\sum_{i \in I^{c}} a_{i} x_{i}\right)+\sum_{\substack{I \in \mathcal{V} \\
n \notin I}} f\left(\sum_{i \in I} a_{i} x_{i}-\sum_{\substack{i \in I^{c} \\
i \neq n}} a_{i} x_{i}-x_{n}\right) \tag{2.16}\\
= & 2^{n-2} a_{1} \sum_{i=2}^{n-1} a_{i}^{2}\left[f\left(x_{1}+x_{i}\right)+f\left(x_{1}-x_{i}\right)\right]+2^{n-1} a_{1}\left(a_{1}^{2}-1-\sum_{i=2}^{n-1} a_{i}^{2}\right) f\left(x_{1}\right) \\
& +2^{n-2} a_{1}\left[f\left(x_{1}+x_{n}\right)+f\left(x_{1}-x_{n}\right)\right]
\end{align*}
$$

for all $x_{1}, \ldots, x_{n} \in X$. Letting $b_{i}=a_{i}$ for all $1 \leq i \leq n-1$ and replacing x_{n} by $b_{n} x_{n}+x_{n+1}$ in (2.16), we obtain

$$
\begin{align*}
& \sum_{\substack{I \in \mathcal{V} \\
n \in I}} f\left(b_{n} x_{n}+x_{n+1}+\sum_{\substack{i \in I \\
i \neq n}} b_{i} x_{i}-\sum_{i \in I^{c}} b_{i} x_{i}\right) \tag{2.17}\\
& +\sum_{\substack{I \in \mathcal{V} \\
n \notin I}} f\left(\sum_{i \in I} b_{i} x_{i}-\sum_{\substack{i \in I^{c} \\
i \neq n}} b_{i} x_{i}-b_{n} x_{n}-x_{n+1}\right) \\
= & 2^{n-2} b_{1} \sum_{i=2}^{n-1} b_{i}^{2}\left[f\left(x_{1}+x_{i}\right)+f\left(x_{1}-x_{i}\right)\right]+2^{n-1} b_{1}\left(b_{1}^{2}-1-\sum_{i=2}^{n-1} b_{i}^{2}\right) f\left(x_{1}\right) \\
& +2^{n-2} b_{1}\left[f\left(x_{1}+b_{n} x_{n}+x_{n+1}\right)+f\left(x_{1}-b_{n} x_{n}-x_{n+1}\right)\right]
\end{align*}
$$

for all $x_{1}, \ldots, x_{n+1} \in X$ where b_{n} is a non-zero integer. Replacing x_{n} by $-x_{n}$ in (2.17), we have

$$
\begin{align*}
& \sum_{\substack{I \in \mathcal{V} \\
n \in I}} f\left(-b_{n} x_{n}+x_{n+1}+\sum_{\substack{i \in I \\
i \neq n}} b_{i} x_{i}-\sum_{i \in I^{c}} b_{i} x_{i}\right) \tag{2.18}\\
& +\sum_{\substack{I \in \mathcal{V} \\
n \notin I}} f\left(\sum_{i \in I} b_{i} x_{i}-\sum_{\substack{i \in I^{c} \\
i \neq n}} b_{i} x_{i}+b_{n} x_{n}-x_{n+1}\right) \\
= & 2^{n-2} b_{1} \sum_{i=2}^{n-1} b_{i}^{2}\left[f\left(x_{1}+x_{i}\right)+f\left(x_{1}-x_{i}\right)\right]+2^{n-1} b_{1}\left(b_{1}^{2}-1-\sum_{i=2}^{n-1} b_{i}^{2}\right) f\left(x_{1}\right) \\
& +2^{n-2} b_{1}\left[f\left(x_{1}-b_{n} x_{n}+x_{n+1}\right)+f\left(x_{1}+b_{n} x_{n}-x_{n+1}\right)\right]
\end{align*}
$$

for all $x_{1}, \ldots, x_{n+1} \in X$. Let $\mathcal{W}:=\{J \subseteq\{1,2, \ldots, n+1\}: 1 \in J\}$ and $b_{n+1}=1$. Then

$$
\begin{aligned}
& \sum_{\substack{I \in \mathcal{V} \\
n \in I}}\left\{f\left(b_{n} x_{n}+x_{n+1}+\sum_{\substack{i \in I \\
i \neq n}} b_{i} x_{i}-\sum_{i \in I^{c}} b_{i} x_{i}\right)+f\left(-b_{n} x_{n}+x_{n+1}+\sum_{\substack{i \in I \\
i \neq n}} b_{i} x_{i}-\sum_{i \in I^{c}} b_{i} x_{i}\right)\right\} \\
& +\sum_{\substack{I \in \mathcal{V} \\
n \notin I}}\left\{f\left(\sum_{i \in I} b_{i} x_{i}-\sum_{\substack{i \in I^{c} \\
i \neq n}} b_{i} x_{i}-b_{n} x_{n}-x_{n+1}\right)+f\left(\sum_{i \in I} b_{i} x_{i}-\sum_{\substack{i \in I^{c} \\
i \neq n}} b_{i} x_{i}+b_{n} x_{n}-x_{n+1}\right)\right\} \\
= & \sum_{\substack{I \in \mathcal{V} \\
n \in I}}\left\{f\left(x_{n+1}+\sum_{i \in I} b_{i} x_{i}-\sum_{i \in I^{c}} b_{i} x_{i}\right)+f\left(-b_{n} x_{n}+x_{n+1}+\sum_{\substack{i \in I \\
i \neq n}} b_{i} x_{i}-\sum_{i \in I^{c}} b_{i} x_{i}\right)\right\} \\
& +\sum_{\substack{I \in \mathcal{V} \\
n \notin I}}\left\{\left(-x_{n+1}+\sum_{i \in I} b_{i} x_{i}-\sum_{i \in I^{c}} b_{i} x_{i}\right)+f\left(\sum_{i \in I} b_{i} x_{i}-\sum_{\substack{i \in I^{c} \\
i \neq n}} b_{i} x_{i}+b_{n} x_{n}-x_{n+1}\right)\right\} \\
= & \sum_{J \in \mathcal{W}} f\left(\sum_{i \in J} b_{i} x_{i}-\sum_{i \in J^{c}} b_{i} x_{i}\right) .
\end{aligned}
$$

Therefore adding (2.17) to (2.18), we get

$$
\begin{align*}
& \sum_{J \in \mathcal{W}} f\left(\sum_{i \in J} b_{i} x_{i}-\sum_{i \in J^{c}} b_{i} x_{i}\right) \tag{2.19}\\
= & 2^{n-1} b_{1} \sum_{i=2}^{n-1} b_{i}^{2}\left[f\left(x_{1}+x_{i}\right)+f\left(x_{1}-x_{i}\right)\right]+2^{n} b_{1}\left(b_{1}^{2}-1-\sum_{i=2}^{n-1} b_{i}^{2}\right) f\left(x_{1}\right) \\
& +2^{n-2} b_{1}\left[f\left(x_{1}+x_{n+1}-b_{n} x_{n}\right)+f\left(x_{1}-x_{n+1}+b_{n} x_{n}\right)\right. \\
& \left.+f\left(x_{1}+x_{n+1}+b_{n} x_{n}\right)+f\left(x_{1}-x_{n+1}-b_{n} x_{n}\right)\right]
\end{align*}
$$

for all $x_{1}, \ldots, x_{n+1} \in X$. Finally, it follows from (2.1) and (2.19) that

$$
\begin{aligned}
& \sum_{J \in \mathcal{W}} f\left(\sum_{i \in J} b_{i} x_{i}-\sum_{i \in J^{c}} b_{i} x_{i}\right) \\
= & 2^{n-1} b_{1} \sum_{i=2}^{n+1} b_{i}^{2}\left[f\left(x_{1}+x_{i}\right)+f\left(x_{1}-x_{i}\right)\right]+2^{n} b_{1}\left(b_{1}^{2}-\sum_{i=2}^{n+1} b_{i}^{2}\right) f\left(x_{1}\right)
\end{aligned}
$$

for all $x_{1}, \ldots, x_{n+1} \in X$. Hence (1.3) holds for $|M|=n+1$. This completes the proof.

Remark 2.3. Using the proof of Theorem 2.2, we conclude that if $f: X \rightarrow Y$ is a cubic function, then f satisfies (1.3) for $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ with $a_{n}=1$.

Theorem 2.4. Let $f: X \rightarrow Y$ be a cubic function and $b_{1}, \ldots, b_{n} \in \mathbb{Z}$. Then

$$
\begin{equation*}
\sum_{I \in \mathcal{V}} f\left(\sum_{i \in I} b_{i} x_{i}-\sum_{i \in I^{c}} b_{i} x_{i}\right) \tag{2.20}
\end{equation*}
$$

$$
=2^{n-2} b_{1} \sum_{i=2}^{n} b_{i}^{2}\left[f\left(x_{1}+x_{i}\right)+f\left(x_{1}-x_{i}\right)\right]+2^{n-1} b_{1}\left(b_{1}^{2}-\sum_{i=2}^{n} b_{i}^{2}\right) f\left(x_{1}\right)
$$

for all $x_{1}, \ldots, x_{n} \in X$.
Proof. Since f is cubic, f satisfies (2.20) when $b_{n}=1$. That is

$$
\begin{align*}
& \sum_{\substack{I \in \mathcal{V} \\
n \in I}} f\left(x_{n}+\sum_{\substack{i \in I \\
i \neq n}} b_{i} x_{i}-\sum_{i \in I^{c}} b_{i} x_{i}\right)+\sum_{\substack{I \in \mathcal{V} \\
n \notin I}} f\left(\sum_{i \in I} b_{i} x_{i}-\sum_{\substack{i \in I^{c} \\
i \neq n}} b_{i} x_{i}-x_{n}\right) \tag{2.21}\\
= & 2^{n-2} b_{1} \sum_{i=2}^{n-1} b_{i}^{2}\left[f\left(x_{1}+x_{i}\right)+f\left(x_{1}-x_{i}\right)\right] \\
& +2^{n-2} b_{1}\left[f\left(x_{1}+x_{n}\right)+f\left(x_{1}-x_{n}\right)\right]+2^{n-1} b_{1}\left(b_{1}^{2}-1-\sum_{i=2}^{n-1} b_{i}^{2}\right) f\left(x_{1}\right)
\end{align*}
$$

for all $x_{1}, \ldots, x_{n} \in X$. Replacing x_{n} by $b_{n} x_{n}$ in (2.21), we get

$$
\begin{align*}
& \sum_{I \in \mathcal{V}} f\left(\sum_{i \in I} b_{i} x_{i}-\sum_{i \in I^{c}} b_{i} x_{i}\right) \tag{2.22}\\
= & 2^{n-2} b_{1} \sum_{i=2}^{n-1} b_{i}^{2}\left[f\left(x_{1}+x_{i}\right)+f\left(x_{1}-x_{i}\right)\right] \\
& +2^{n-2} b_{1}\left[f\left(x_{1}+b_{n} x_{n}\right)+f\left(x_{1}-b_{n} x_{n}\right)\right] \\
& +2^{n-1} b_{1}\left(b_{1}^{2}-1-\sum_{i=2}^{n-1} b_{i}^{2}\right) f\left(x_{1}\right)
\end{align*}
$$

for all $x_{1}, \ldots, x_{n} \in X$. Since f is cubic, f satisfies (2.2). Hence it follows from (2.2) and (2.22) that f satisfies (2.20).

Remark 2.5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a cubic function. If f is continuous at one point or f is measurable, then f is continuous on \mathbb{R} and $f(x)=f(1) x^{3}$ for all $x \in \mathbb{R}$ (see [12]).

3. Generalized Hyers-Ulam stability

Before obtaining the main results in this section, we firstly introduce some useful concepts: we fix a real number β with $0<\beta \leq 1$ and let \mathbb{K} denote either \mathbb{R} or \mathbb{C}. Let X be a linear space over \mathbb{K}. A real-valued function $\|\cdot\|_{\beta}$ is called a β-norm on X if and only if it satisfies
$(\beta N 1)\|x\|_{\beta}=0$ if and only if $x=0$;
($\beta N 2$) $\|\lambda x\|_{\beta}=|\lambda|^{\beta} .\|x\|$ for all $\lambda \in \mathbb{K}$ and all $x \in X$;
($\beta N 3$) $\|x+y\|_{\beta} \leq\|x\|_{\beta}+\|y\|_{\beta}$ for all $x, y \in X$.
The pair $\left(X,\|\cdot\|_{\beta}\right)$ is called a β-normed space (see [2]). A β-Banach space is a complete β-normed space.

Throughout this section, let B be a unital Banach algebra with norm $|\cdot|$, $B_{1}=\{a \in B:|a|=1\}, \mathbb{X}$ be a β-normed left B-module and \mathbb{Y} be a β-normed
left Banach B-module. Using the fixed point alternative of Cădariu and Radu [3, 22], we will investigate the generalized Hyers-Ulam stability problem for the functional equation (1.3). Thus we find the condition that there exists a true cubic function near an approximately cubic function. We recall that $M=\{1,2, \ldots, n\}, \mathcal{V}=\{I \subseteq M: 1 \in I\}$ and $I^{c}=M \backslash I$. Let a_{1}, \ldots, a_{n} be non-zero integers with $a_{1} \neq \pm 1, a_{n}=1$ and $a_{1}^{2}-\sum_{i=2}^{n} a_{i}^{2} \neq 0$. For convenience, we use the following abbreviation for a given function $f: \mathbb{X} \rightarrow \mathbb{Y}$:

$$
\begin{aligned}
D_{b} f\left(x_{1}, \ldots, x_{n}\right):= & \sum_{I \in \mathcal{V}} f\left(\sum_{i \in I} a_{i} b x_{i}-\sum_{i \in I^{c}} a_{i} b x_{i}\right) \\
& -2^{n-2} a_{1} \sum_{i=2}^{n} a_{i}^{2}\left[f\left(b x_{1}+b x_{i}\right)+f\left(b x_{1}-b x_{i}\right)\right] \\
& -2^{n-1} a_{1}\left(a_{1}^{2}-\sum_{i=2}^{n} a_{i}^{2}\right) b^{3} f\left(x_{1}\right)
\end{aligned}
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{X}$ and $b \in B_{1}$. We recall the following result by Margolis and Diaz [16].

Theorem 3.1. Let (E, d) be a complete generalized metric space and let J : $E \rightarrow E$ be a strictly contractive function with Lipschitz constant $L<1$. Then for each given element $x \in E$, either $d\left(J^{n} x, J^{n+1} x\right)=\infty$ for all nonnegative integers n or there exists a non-negative integer n_{0} such that
(1) $d\left(J^{n} x, J^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
(2) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point y^{*} of J;
(3) y^{*} is the unique fixed point of J in the set $Y=\left\{y \in E: d\left(J^{n_{0}} x, y\right)<\right.$ ∞ \};
(4) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

Theorem 3.2. Let $f: \mathbb{X} \rightarrow \mathbb{Y}$ be a function with $f(0)=0$ for which there exists a function $\varphi: \mathbb{X}^{n}=\underbrace{\mathbb{X} \times \mathbb{X} \times \cdots \times \mathbb{X}}_{n-\text { times }} \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\left\|D_{b} f\left(x_{1}, \ldots, x_{n}\right)\right\|_{\beta} \leq \varphi\left(x_{1}, \ldots, x_{n}\right) \tag{3.1}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{X}$ and all $b \in B_{1}$. If there exists a constant $0<L<1$ such that

$$
\begin{equation*}
\varphi\left(a_{1} x_{1}, \ldots, a_{1} x_{n}\right) \leq\left|a_{1}\right|^{3 \beta} L \varphi\left(x_{1}, \ldots, x_{n}\right) \tag{3.2}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{X}$, then there exists a unique cubic function $C: \mathbb{X} \rightarrow \mathbb{Y}$ such that

$$
\begin{equation*}
\|f(x)-C(x)\|_{\beta} \leq \frac{1}{2^{(n-1) \beta}\left|a_{1}\right|^{3 \beta}(1-L)} \varphi(x, \underbrace{0, \ldots, 0}_{n-1}) \tag{3.3}
\end{equation*}
$$

for all $x \in \mathbb{X}$. Moreover, if $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathbb{X}$, then C is B-cubic, i.e., $C(b x)=b^{3} C(x)$ for all $x \in \mathbb{X}$ and all $b \in B$.

Proof. It follows from (3.2) that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{\left|a_{1}\right|^{3 k \beta}} \varphi\left(a_{1}^{k} x_{1}, \ldots, a_{1}^{k} x_{n}\right)=0 \tag{3.4}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{X}$. Letting $x_{1}=x, x_{2}=x_{3}=\cdots=x_{n}=0$ and $b=1$ in (3.1) and using $f(0)=0$, we get

$$
\begin{equation*}
\left\|f\left(a_{1} x\right)-a_{1}^{3} f(x)\right\|_{\beta} \leq \frac{1}{2^{(n-1) \beta}} \varphi(x, 0,0, \ldots, 0) \tag{3.5}
\end{equation*}
$$

for all $x \in X$. Let E be the set of all functions $g: \mathbb{X} \rightarrow \mathbb{Y}$ with $g(0)=0$ and introduce a generalized metric on E as follows:
$d(g, h):=\inf \left\{K \in[0, \infty]:\|g(x)-h(x)\|_{\beta} \leq K \varphi(x, 0,0, \ldots, 0) \quad\right.$ for all $\left.x \in \mathbb{X}\right\}$.
It is easy to show that (E, d) is a generalized complete metric space (see the Theorem 2.5 of [3]). Now we consider the function $\Lambda: E \rightarrow E$ defined by

$$
(\Lambda g)(x)=\frac{1}{a_{1}^{3}} g\left(a_{1} x\right) \quad \text { for all } g \in E \text { and } x \in \mathbb{X}
$$

Let $g, h \in E$ and let $K \in[0, \infty]$ be an arbitrary constant with $d(g, h) \leq K$. From the definition of d, we have

$$
\|g(x)-h(x)\|_{\beta} \leq K \varphi(x, 0,0, \ldots, 0)
$$

for all $x \in \mathbb{X}$. By the assumption and the last inequality, we have

$$
\begin{aligned}
\|(\Lambda g)(x)-(\Lambda h)(x)\|_{\beta} & =\frac{1}{\left|a_{1}\right|^{3 \beta}}\left\|g\left(a_{1} x\right)-h\left(a_{1} x\right)\right\|_{\beta} \\
& \leq \frac{1}{\left|a_{1}\right|^{3 \beta}} K \varphi\left(a_{1} x, 0,0, \ldots, 0\right) \leq K L \varphi(x, 0,0, \ldots, 0)
\end{aligned}
$$

for all $x \in \mathbb{X}$. So

$$
d(\Lambda g, \Lambda h) \leq L d(g, h)
$$

for any $g, h \in E$. It follows from (3.5) that $d(\Lambda f, f) \leq \frac{1}{2^{(n-1) \beta}\left|a_{1}\right|^{3 \beta}}$. Therefore according to Theorem 3.1, the sequence $\left\{\Lambda^{k} f\right\}$ converges to a fixed point C of Λ, i.e.,

$$
C: \mathbb{X} \rightarrow \mathbb{Y}, \quad C(x)=\lim _{k \rightarrow \infty}\left(\Lambda^{k} f\right)(x)=\lim _{k \rightarrow \infty} \frac{1}{a_{1}^{3 k}} f\left(a_{1}^{k} x\right)
$$

and $C\left(a_{1} x\right)=a_{1}^{3} C(x)$ for all $x \in \mathbb{X}$. Also C is the unique fixed point of Λ in the set $E^{*}=\{g \in E: d(f, g)<\infty\}$ and

$$
d(C, f) \leq \frac{1}{1-L} d(\Lambda f, f) \leq \frac{1}{2^{(n-1) \beta}\left|a_{1}\right|^{3 \beta}(1-L)}
$$

i.e., inequality (3.3) holds true for all $x \in \mathbb{X}$. It follows from the definition of C, (3.1) and (3.4) that

$$
\left\|D_{1} C\left(x_{1}, \ldots, x_{n}\right)\right\|_{\beta}=\lim _{k \rightarrow \infty} \frac{1}{\left|a_{1}\right|^{3 k \beta}}\left\|D_{1} f\left(a_{1}^{k} x_{1}, \ldots, a_{1}^{k} x_{n}\right)\right\|_{\beta}
$$

$$
\leq \lim _{k \rightarrow \infty} \frac{1}{\left|a_{1}\right|^{3 k \beta}} \varphi\left(a_{1}^{k} x_{1}, \ldots, a_{1}^{k} x_{n}\right)=0
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{X}$. By Theorem 2.2, the function $C: \mathbb{X} \rightarrow \mathbb{Y}$ is cubic. Finally it remains to prove the uniqueness of C. Let $T: \mathbb{X} \rightarrow \mathbb{Y}$ be another cubic function satisfying (3.3). Since $d(f, T) \leq \frac{1}{2^{(n-1) \beta}\left|a_{1}\right|^{3 \beta}(1-L)}$ and T is cubic, we get $T \in E^{*}$ and $(\Lambda T)(x)=\frac{1}{a_{1}^{3}} T\left(a_{1} x\right)=T(x)$ for all $x \in \mathbb{X}$, i.e., T is a fixed point of Λ. Since C is the unique fixed point of Λ in E^{*}, then $T=C$.

Moreover, if $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathbb{X}$, then by the same reasoning as in the proof of [23] C is \mathbb{R}-cubic. Setting $x_{1}=x$ and $x_{2}=\cdots=x_{n}=0$ in (3.1), we get
$\left\|f\left(a_{1} b x\right)-a_{1} \sum_{i=2}^{n} a_{i}^{2} f(b x)-a_{1}\left(a_{1}^{2}-\sum_{i=2}^{n} a_{i}^{2}\right) b^{3} f(x)\right\|_{\beta} \leq \frac{1}{2^{(n-1) \beta}} \varphi(x, 0,0, \ldots, 0)$
for all $x \in \mathbb{X}$ and all $b \in B_{1}$. By definition of C, (3.4) and (3.6), we obtain

$$
C\left(a_{1} b x\right)-a_{1} \sum_{i=2}^{n} a_{i}^{2} C(b x)-a_{1}\left(a_{1}^{2}-\sum_{i=2}^{n} a_{i}^{2}\right) b^{3} C(x)=0
$$

for all $x \in \mathbb{X}$ and all $b \in B_{1}$. Since C is cubic and $a_{1}^{2}-\sum_{i=2}^{n} a_{i}^{2} \neq 0$, we get $C(b x)=b^{3} C(x)$ for all $x \in \mathbb{X}$ and all $b \in B_{1} \cup\{0\}$. Now, let $b \in B \backslash\{0\}$. Since C is \mathbb{R}-cubic,

$$
C(b x)=C\left(|b| \cdot \frac{b}{|b|} x\right)=|b|^{3} C\left(\frac{b}{|b|} x\right)=|b|^{3} \cdot\left(\frac{b}{|b|}\right)^{3} C(x)=b^{3} C(x)
$$

for all $x \in \mathbb{X}$ and all $b \in B$. This proves that C is B-cubic.
Corollary 3.3. Let $0<r<3$ and θ, δ be non-negative real numbers and let $f: \mathbb{X} \rightarrow \mathbb{Y}$ be a function with $f(0)=0$ such that

$$
\begin{equation*}
\left\|D_{b} f\left(x_{1}, \ldots, x_{n}\right)\right\|_{\beta} \leq \delta+\theta \sum_{i=1}^{n}\left\|x_{i}\right\|_{\beta}^{r} \tag{3.7}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{X}$ and all $b \in B_{1}$. Then there exists a unique cubic function $C: \mathbb{X} \rightarrow \mathbb{Y}$ such that
$\|f(x)-C(x)\|_{\beta} \leq \frac{1}{2^{(n-1) \beta}\left(\left|a_{1}\right|^{3 \beta}-\left|a_{1}\right|^{\beta r}\right)} \delta+\frac{1}{2^{(n-1) \beta}\left(\left|a_{1}\right|^{3 \beta}-\left|a_{1}\right|^{\beta r}\right)} \theta\|x\|_{\beta}^{r}$
for all $x \in \mathbb{X}$. Moreover, if $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathbb{X}$, then C is B-cubic.

Remark 3.4. Let $f: \mathbb{X} \rightarrow \mathbb{Y}$ be a function for which there exists a function $\varphi: \mathbb{X}^{n} \rightarrow[0, \infty)$ satisfying (3.1). Let $0<L<1$ be a constant such that $\left|a_{1}\right|^{3 \beta} \varphi\left(x_{1}, \ldots, x_{n}\right) \leq L \varphi\left(a_{1} x_{1}, \ldots, a_{1} x_{n}\right)$ for all $x_{1}, \ldots, x_{n} \in \mathbb{X} . f(0)=0$,
since $\varphi(0, \ldots, 0)=0$. By a similar method to the proof of Theorem 3.2, one can show that there exists a unique cubic function $C: \mathbb{X} \rightarrow \mathbb{Y}$ satisfying

$$
\|f(x)-C(x)\|_{\beta} \leq \frac{L}{2^{(n-1) \beta}\left|a_{1}\right|^{3 \beta}(1-L)} \varphi(x, 0,0, \ldots, 0)
$$

for all $x \in \mathbb{X}$. Moreover, if $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathbb{X}$, then C is B-cubic.

For the case $\varphi\left(x_{1}, \ldots, x_{n}\right):=\theta \sum_{i=1}^{n}\left\|x_{i}\right\|^{r}$ (where θ is a non-negative real number and $r>3$), there exists a unique cubic function $C: \mathbb{X} \rightarrow \mathbb{Y}$ satisfying

$$
\|f(x)-C(x)\|_{\beta} \leq \frac{1}{2^{(n-1) \beta}\left(\left|a_{1}\right|^{\beta r}-\left|a_{1}\right|^{3 \beta}\right)} \theta\|x\|_{\beta}^{r}
$$

for all $x \in \mathbb{X}$.
Remark 3.5. Let $f: \mathbb{X} \rightarrow \mathbb{Y}$ be given and

$$
\begin{aligned}
D_{b}^{\prime} f\left(x_{1}, \ldots, x_{n}\right):= & \sum_{I \in \mathcal{V}} f\left(\sum_{i \in I} a_{i} b x_{i}-\sum_{i \in I^{c}} a_{i} b x_{i}\right) \\
& -2^{n-2} a_{1} \sum_{i=2}^{n} a_{i}^{2} b^{3}\left[f\left(x_{1}+x_{i}\right)+f\left(x_{1}-x_{i}\right)\right] \\
& -2^{n-1} a_{1}\left(a_{1}^{2}-\sum_{i=2}^{n} a_{i}^{2}\right) b^{3} f\left(x_{1}\right)
\end{aligned}
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{X}$ and $b \in B_{1}$. Theorem 3.2 and Remark 3.4 hold true if we replace $D_{b} f\left(x_{1}, \ldots, x_{n}\right)$ by $D_{b}^{\prime} f\left(x_{1}, \ldots, x_{n}\right)$ in (3.1). In this case we do not need the condition $a_{1}^{2}-\sum_{i=2}^{n} a_{i}^{2} \neq 0$.

The generalized Hyers-Ulam stability problem for the case of $r=3$ was excluded in Corollary 3.3 and Remarks 3.4, 3.5. In fact, the functional equation (1.3) is not stable for $r=3$ in (3.7) as we shall see in the following example, which is a modification of the example of Z . Gajda [6] for the additive functional inequality.

Example 3.6. Let $\phi: \mathbb{C} \rightarrow \mathbb{C}$ be defined by

$$
\phi(x):= \begin{cases}x^{3} & \text { for }|x|<1 \\ 1 & \text { for }|x| \geq 1\end{cases}
$$

Consider the function $f: \mathbb{C} \rightarrow \mathbb{C}$ by the formula

$$
f(x):=\sum_{m=0}^{\infty} \alpha^{-3 m} \phi\left(\alpha^{m} x\right)
$$

where $\alpha>\max \left\{\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right\}$ and a_{1}, \ldots, a_{n} are non-zero integers. Let

$$
D_{\mu} f\left(x_{1}, \ldots, x_{n}\right):=\sum_{I \in \mathcal{V}} f\left(\sum_{i \in I} a_{i} \mu x_{i}-\sum_{i \in I^{c}} a_{i} \mu x_{i}\right)
$$

$$
\begin{aligned}
& -2^{n-2} a_{1} \sum_{i=2}^{n} a_{i}^{2}\left[f\left(\mu x_{1}+\mu x_{i}\right)+f\left(\mu x_{1}-\mu x_{i}\right)\right] \\
& -2^{n-1} a_{1}\left(a_{1}^{2}-\sum_{i=2}^{n} a_{i}^{2}\right) \mu^{3} f\left(x_{1}\right), \\
D_{\mu}^{\prime} f\left(x_{1}, \ldots, x_{n}\right):= & \sum_{I \in \mathcal{V}} f\left(\sum_{i \in I} a_{i} \mu x_{i}-\sum_{i \in I^{c}} a_{i} \mu x_{i}\right) \\
& -2^{n-2} a_{1} \sum_{i=2}^{n} a_{i}^{2} \mu^{3}\left[f\left(x_{1}+x_{i}\right)+f\left(x_{1}-x_{i}\right)\right] \\
& -2^{n-1} a_{1}\left(a_{1}^{2}-\sum_{i=2}^{n} a_{i}^{2}\right) \mu^{3} f\left(x_{1}\right) .
\end{aligned}
$$

Then f satisfies

$$
\begin{align*}
& \left\|D_{\mu} f\left(x_{1}, \ldots, x_{n}\right)\right\| \leq \frac{n 2^{n} \alpha^{12}}{M^{3}\left(\alpha^{3}-1\right)} \sum_{i=1}^{n}\left|x_{i}\right|^{3}, \tag{3.8}\\
& \left\|D_{\mu}^{\prime} f\left(x_{1}, \ldots, x_{n}\right)\right\| \leq \frac{n 2^{n} \alpha^{12}}{M^{3}\left(\alpha^{3}-1\right)} \sum_{i=1}^{n}\left|x_{i}\right|^{3} \tag{3.9}
\end{align*}
$$

for all $\mu \in \mathbb{T}:=\{\lambda \in \mathbb{C}:|\lambda|=1\}$, all $M \in\left(0, \frac{1}{n}\right)$ and all $x_{1}, \ldots, x_{n} \in \mathbb{C}$, and the range of $|f(x)-C(x)| /|x|^{3}$ for $x \neq 0$ is unbounded for each cubic function $C: \mathbb{C} \rightarrow \mathbb{C}$.
Proof. It is enough to prove that f satisfies (3.8) and we have a similar proof for (3.9). It is clear that f is bounded by $\frac{\alpha^{3}}{\alpha^{3}-1}$ on \mathbb{C}. Let $0<M<\frac{1}{n}$. If $\sum_{i=1}^{n}\left|a_{i} x_{i}\right|^{3}=0$ or $\sum_{i=1}^{n}\left|a_{i} x_{i}\right|^{3} \geq \frac{M^{3}}{\alpha^{3}}$, then

$$
\begin{aligned}
\left|D_{\mu} f\left(x_{1}, \ldots, x_{n}\right)\right| & \leq 2^{n-1}\left[1+\left|a_{1}\right| \sum_{i=2}^{n}\left|a_{i}\right|^{2}+\left|a_{1}\right|\left|a_{1}^{2}-\sum_{i=2}^{n} a_{i}^{2}\right|\right] \frac{\alpha^{3}}{\alpha^{3}-1} \\
& \leq n 2^{n} \frac{\alpha^{6}}{\alpha^{3}-1} \\
& \leq \frac{n 2^{n} \alpha^{12}}{M^{3}\left(\alpha^{3}-1\right)} \sum_{i=1}^{n}\left|x_{i}\right|^{3} .
\end{aligned}
$$

Now suppose that $0<\sum_{i=1}^{n}\left|a_{i} x_{i}\right|^{3}<\frac{M^{3}}{\alpha^{3}}$. Then there exists an integer $k \geq 1$ such that

$$
\begin{equation*}
\frac{M^{3}}{\alpha^{3(k+1)}} \leq \sum_{i=1}^{n}\left|a_{i} x_{i}\right|^{3}<\frac{M^{3}}{\alpha^{3 k}} \tag{3.10}
\end{equation*}
$$

Therefore

$$
\alpha^{m}\left|\sum_{i \in I} a_{i} \mu x_{i}-\sum_{i \in I^{c}} a_{i} \mu x_{i}\right|, \alpha^{m}\left|\mu x_{1} \pm \mu x_{i}\right|, \alpha^{m}\left|x_{1}\right|<1
$$

for all $m=0,1, \ldots, k-1, i=2, \ldots, n$ and all $I \in \mathcal{V}$. From the definition of f and (3.10), we have

$$
\begin{aligned}
& \left|D_{\mu} f\left(x_{1}, \ldots, x_{n}\right)\right| \\
= & \mid \sum_{I \in \mathcal{V}} \sum_{m=k}^{\infty} \alpha^{-3 m} \phi\left(\sum_{i \in I} \alpha^{m} a_{i} \mu x_{i}-\sum_{i \in I^{c}} \alpha^{m} a_{i} \mu x_{i}\right) \\
& -2^{n-2} a_{1} \sum_{i=2}^{n} a_{i}^{2} \sum_{m=k}^{\infty} \alpha^{-3 m}\left[\phi\left(\alpha^{m} \mu x_{1}+\alpha^{m} \mu x_{i}\right)+\phi\left(\alpha^{m} \mu x_{1}-\alpha^{m} \mu x_{i}\right)\right] \\
& \quad-2^{n-1} a_{1}\left(a_{1}^{2}-\sum_{i=2}^{n} a_{i}^{2}\right) \mu^{3} \sum_{m=k}^{\infty} \alpha^{-3 m} \phi\left(\alpha^{m} x_{1}\right) \mid \\
\leq & 2^{n-1}\left[1+\left|a_{1}\right| \sum_{i=2}^{n}\left|a_{i}\right|^{2}+\left|a_{1}\right|\left|a_{1}^{2}-\sum_{i=2}^{n} a_{i}^{2}\right|\right] \frac{\alpha^{3}}{\alpha^{3 k}\left(\alpha^{3}-1\right)} \\
\leq & n 2^{n} \frac{\alpha^{6}}{\alpha^{3 k}\left(\alpha^{3}-1\right)} \leq \frac{n 2^{n} \alpha^{9}}{M^{3}\left(\alpha^{3}-1\right)} \sum_{i=1}^{n}\left|a_{i} x_{i}\right|^{3} \leq \frac{n 2^{n} \alpha^{12}}{M^{3}\left(\alpha^{3}-1\right)} \sum_{i=1}^{n}\left|x_{i}\right|^{3}
\end{aligned}
$$

Therefore f satisfies (3.8). Let $C: \mathbb{C} \rightarrow \mathbb{C}$ be a cubic function such that

$$
|f(x)-C(x)| \leq \beta|x|^{3}
$$

for all $x \in \mathbb{C}$. Then there exists a constant $\gamma \in \mathbb{C}$ such that $C(x)=\gamma x^{3}$ for all rational numbers x. So we have

$$
\begin{equation*}
|f(x)| \leq(\beta+|c|)|x|^{3} \tag{3.11}
\end{equation*}
$$

for all rational numbers x. Let $m \in \mathbb{N}$ with $m>\beta+|\gamma|$. If x is a rational number in $\left(0, \alpha^{1-m}\right)$, then $\alpha^{k} x \in(0,1)$ for all $k=0,1, \ldots, m-1$. So

$$
f(x) \geq \sum_{k=0}^{m-1} \alpha^{-3 k} \phi\left(\alpha^{k} x\right)=m x^{3}>(\beta+|\gamma|) x^{3}
$$

which contradicts (3.11).
Acknowledgment. The authors would like to thank the referee for a number of valuable suggestions regarding a previous version of this paper.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[2] V. K. Balachandran, Topological Algebras, Narosa Publishing House, New Delhi, Madras, Bombay, Calcutta, London, 1999.
[3] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Iteration theory (ECIT '02), 43-52, Grazer Math. Ber., 346, Karl-FranzensUniv. Graz, Graz, 2004.
[4] P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore, London, 2002.
[5] M. Eshaghi Gordji and H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Anal. 71 (2009), no. 11, 5629-5643.
[6] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434.
[7] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.
[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224.
[9] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäser, Basel, 1998.
[10] K. W. Jun and H. M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), no. 2, 267-278.
[11] _, Ulam stability problem for a mixed type of cubic and additive functional equation, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 2, 271-285.
[12] , On the stability of Euler-Lagrange type cubic mappings in quasi-Banach spaces, J. Math. Anal. Appl. 332 (2007), no. 2, 1335-1350.
[13] K. W. Jun, H. M. Kim, and I. S. Chang, On the Hyers-Ulam stability of an EulerLagrange type cubic functional equation, J. Comput. Anal. Appl. 7 (2005), no. 1, 21-33.
[14] K. Jun and S. Lee, On the generalized Hyers-Ulam stability of a cubic functional equation, J. Chungcheong Math. Soc. 19 (2006), no. 2, 189-196.
[15] H. Khodaei and Th. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1 (2010), 22-41.
[16] B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309.
[17] A. Najati, Hyers-Ulam-Rassias stability of a cubic functional equation, Bull. Korean Math. Soc. 44 (2007), no. 4, 825-840.
[18] A. Najati and F. Moradlou, Stability of an Euler-Lagrange type cubic functional equation, Turkish J. Math. 33 (2009), no. 1, 65-73.
[19] , Stability of a mixed additive, quadratic and cubic functional equation in quasiBanach spaces, Aust. J. Math. Anal. Appl. 5 (2008), no. 2, Article 10, 21 pp.
[20] A. Najati and C. Park, On the stability of a cubic functional equation, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 12, 1953-1964.
[21] A. Najati and G. Zamani Eskandani, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl. 342 (2008), no.2, 1318-1331.
[22] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), no. 1, 91-96.
[23] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
[24] , The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), no. 2, 352-378.
[25] , On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130.
[26] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, science Editions., Wiley, New York, 1964.

Majid Eshaghi Gordji
Department of Mathematics
Semnan University
P. O. Box 35195-363, Semnan, Iran

AND
Center of Excellence in Nonlinear Analysis and Applications (CENAA)
Semnan University
Iran
E-mail address: madjid.eshaghi@gmail.com
Hamid Khodaei
Department of Mathematics
Semnan University
P. O. Box 35195-363, Semnan, Iranand

Center of Excellence in Nonlinear Analysis and Applications (CENAA)
Semnan University
Iran
E-mail address: khodaei.hamid.math@gmail.com
Abbas Najati
Department of Mathematics
University of Mohaghegh Ardabili
Ardabil, Iran
E-mail address: a.nejati@yahoo.com

[^0]: Received April 3, 2010; Revised June 29, 2010.
 2010 Mathematics Subject Classification. 39B82, 39B52, 46H25.
 Key words and phrases. cubic functional equation, generalized Hyers-Ulam stability, Banach module.

