• Title/Summary/Keyword: general failure distribution

Search Result 115, Processing Time 0.019 seconds

Spatial Distribution Functions of Strength Parameters for Simulation of Strength Anisotropy in Transversely Isotropic Rock (횡등방성 암석의 강도 이방성 모사를 위한 강도정수 공간분포함수)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.100-109
    • /
    • 2016
  • This study suggests three spatial distribution functions of strength parameters, which can be adopted in the derivation of failure conditions for transversely isotropic rocks. All three proposed functions, which are the oblate spheroidal function, the exponential function, and the function based on the directional projection of the strength parameter tensor, consist of two model parameters. With assumption that the cohesion and friction angle can be described by the proposed distribution functions, the transversely isotropic Mohr-Coulomb criterion is formulated and used as a failure condition in the simulation of the conventional triaxial tests. The simulation results confirm that the failure criteria incorporating the proposed distribution functions could reproduce the general trend in the variations of the axial stress at failure and the directions of failure planes with varying inclination of the weankness planes and confining pressure. Among three distribution functions, the function based on the directional projection of the strength parameter tensor yields the highest axial strength, while the axial strength estimated by the oblate spheroidal distribution function is the lowest.

Failure Data Error according to Characteristics of One-Shot Weapon System and its Solution (일회성 무기체계 특성에 따른 고장 데이터의 오차 및 극복방안)

  • Choi, Yunsuk;Ma, Jungmok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.599-606
    • /
    • 2018
  • Failure data of systems in many field can be erroneous, which influences the reliability analysis of the systems. The general form of failure data is right censored data with accurate time information. But due to its nature of data collection in the military field, failure time of one-shot weapon systems can have errors which are related to the maintenance period. So this paper suggests a model that can reduce the error by utilizing interval censored data as an alternative to right censored data in weibull distribution.

A Risk Metric for Failure Cause in FMEA under Time-Dependent Failure Occurrence and Detection (FMEA에서 고장발생 및 탐지시간을 고려한 고장원인의 위험평가 척도)

  • Kwon, Hyuck Moo;Hong, Sung Hoon;Lee, Min Koo
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.571-582
    • /
    • 2019
  • Purpose: To develop a risk metric for failure cause that can help determine the action priority of each failure cause in FMEA considering time sequence of cause- failure- detection. Methods: Assuming a quadratic loss function the unfulfilled mission period, a risk metric is obtained by deriving the failure time distribution. Results: The proposed risk metric has some reasonable properties for evaluating risk accompanied with a failure cause. Conclusion: The study may be applied to determining action priorities among all the failure causes in the FMEA sheet, requiring further studies for general situation of failure process.

GENERALIZED LINDLEY DISTRIBUTION USING PROPORTIONAL HAZARD FAMILY AND INFERENCE OF FAILURE TIME DATA

  • Ahmed AL-Adilee;Hawraa A. AL-Challabi;Hassanein Falah;Dalael Saad Abdul-Zahra
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.793-800
    • /
    • 2023
  • In this paper, we propose a generalization of Lindley distribution (GLD) via a special structure that is concern with progressively Type-II right censoring and time failure data. We study the modern properties that we have built by such combination, for example, survival function, hazard function, moments, and estimation by non-Bayesian methods. Application on some selected data related to Lindley distribution (LD) and (ED) have been employed to find out the best distribution that can fit data comparing with the GLD.

Optimal Force Distribution for Quadruped Walking Robots with a Failed Leg (고장 난 다리가 있는 사족 보행 로봇을 위한 최적 힘 배분)

  • Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.614-620
    • /
    • 2009
  • The force distribution in multi-legged robots is a constrained, optimization problem. The solution to the problem is the set points of the leg contact forces for a particular system task. In this paper, an efficient and general formulation of the force distribution problem is developed using linear programming. The considered walking robot is a quadruped robot with a locked-joint failure, i.e., a joint of the failed leg is locked at a known place. For overcoming the drawback of marginal stability in fault-tolerant gaits, we define safety margin on friction constraints as the objective function to be maximized. Dynamic features of locked-joint failure are represented by equality and inequality constraints of linear programming. Unlike the former study, our result can be applied to various forms of walking such as crab and turning gaits. Simulation results show the validity of the proposed scheme.

The Proportional Hazards Modeling for Consecutive Pipe Failures Based on an Individual Pipe Identification Method using the Characteristics of Water Distribution Pipes (상수도 배수관로의 특성에 따른 개별관로 정의 방법을 이용한 파손사건 사이의 비례위험모델링)

  • Park, Suwan;Kim, Jung Wook;Jun, Hwan Don
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.87-96
    • /
    • 2007
  • In this paper a methodology of identifying individual pipes according to the internal and external characteristics of pipe is developed, and the methodology is applied to a case study water distribution pipe break database. Using the newly defined individual pipes the hazard rates of the cast iron 6 inch pipes are modeled by implementing the proportional hazards modeling approach for consecutive pipe failures. The covariates to be considered in the modeling procedures are selected by considering the general availability of the data and the practical applicability of the modeling results. The individual cast iron 6 inch pipes are categorized into seven ordered survival time groups according to the total number of breaks recorded in a pipe to construct distinct proportional hazard model (PHM) for each survival time group (STG). The modeling results show that all of the PHMs have the hazard rate forms of the Weibull distribution. In addition, the estimated baseline survivor functions show that the survival probabilities of the STGs generally decrease as the number of break increases. It is found that STG I has an increasing hazard rate whereas the other STGs have decreasing hazard rates. Regarding the first failure the hazard ratio of spun-rigid and spun-flex cast iron pipes to pit cast iron pipes is estimated as 1.8 and 6.3, respectively. For the second or more failures the relative effects of pipe material/joint type on failure were not conclusive. The degree of land development affected pipe failure for STGs I, II, and V, and the average hazard ratio was estimated as 1.8. The effects of length on failure decreased as more breaks occur and the population in a GRID affected the hazard rate of the first pipe failure.

A Vtub-Shaped Hazard Rate Function with Applications to System Safety

  • Pham, Hoang
    • International Journal of Reliability and Applications
    • /
    • v.3 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • In reliability engineering, the bathtub-shaped hazard rates play an important role in survival analysis and many other applications as well. For the bathtub-shaped, initially the hazard rate decreases from a relatively high value due to manufacturing defects or infant mortality to a relatively stable middle useful life value and then slowly increases with the onset of old age or wear out. In this paper, we present a new two-parameter lifetime distribution function, called the Loglog distribution, with Vtub-shaped hazard rate function. We illustrate the usefulness of the new Vtub-shaped hazard rate function by evaluating the reliability of several helicopter parts based on the data obtained in the maintenance malfunction information reporting system database collected from October 1995 to September 1999. We develop the S-Plus add-in software tool, called Reliability and Safety Assessment (RSA), to calculate reliability measures include mean time to failure, mean residual function, and confidence Intervals of the two helicopter critical parts. We use the mean squared error to compare relative goodness of fit test of the distribution models include normal, lognormal, and Weibull within the two data sets. This research indicates that the result of the new Vtub-shaped hazard rate function is worth the extra function-complexity for a better relative fit. More application in broader validation of this conclusion is needed using other data sets for reliability modeling in a general industrial setting.

  • PDF

Design of Reliability Qualification Test Based on Performance Distribution at the Earlier Stage (초기 단계의 성능분포를 활용한 신뢰성 인증시험의 설계)

  • Jeong, Hai-Sung
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.131-138
    • /
    • 2012
  • A design of reliability qualification test based on performance distribution is developed. In general, the performance of an item degrades as the time goes by and the failure of an item occurs when the performance degradation reaches the pre-determined critical level. This article considers the reliability qualification test based on a more tightened critical value at the earlier stage to reduce the evaluation testing time and cost. A numerical example is provided to illustrate how to use the developed reliability qualification test.

Stochastic Remaining Fatigue Life Assessment Considering Crack Inspection Results (균열 검사 결과를 고려한 선체 잔류 피로 수명의 확률론적 예측)

  • Park, Myong-Jin;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In general, an inspection schedule is established based on the long-term fatigue life during the design stage. However, in the design stage, it is difficult to clearly identify the uncertainty factors affecting long-term fatigue life. In this study, the probabilistic fatigue life assessment was conducted in accordance with the methodology of DNV-GL. Firstly, The initial crack distribution estimated through the initial crack propagation analysis was updated by reflecting the results of crack inspection. Secondly, the updated crack distribution was compared with the initial crack distribution, and the probability of failure was updated with the effect of crack inspection.

Deriving Probability Models for Stress Analysis

  • Ahn Suneung
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.139-149
    • /
    • 2002
  • This paper presents an approach to derive probability models for use in structural reliability studies. Two main points are made. First, that it is possible to translate engineering and physics knowledge into a requirement on the form of a probability model. And second, that making assumptions about a probability model for structural failure implies either explicit or hidden assumptions about material and structural properties. The work is foundational in nature, but is developed with explicit examples taken from planar and general stress problems, the von Mises failure criterion, and a modified Weibull distribution.

  • PDF