20023 =AY F A 2088 EASED S

Deriving Probability Models for Stress Analysis

Ahn, Suneung’
Abstract

This paper presents an approach to derive probability models for use in structural
reliability studies. Two main points are made. First, that it is possible to translate
engineering and physics knowledge into a requirement on the form of a probability
model. And second, that making assumptions about a probability model for
structural failure implies either explicit or hidden assumptions about material and
structural properties. The work is foundational in nature, but is developed with
explicit examples taken from planar and general stress problems, the von Mises
failure criterion, and a modified Weibull distribution.

1. Introduction

An important design parameter for structural analysis is the probability that a
structure or component will fail. This number is generally calculated from material
constants, the probable stresses to be applied to the component, a failure criterion
(such as the von Mises or Tresca criteria), experimentation, and the selection of a
probability model (such as the normal, exponential or Weibull distributions).
Although there has been much discussion on the relative merits of the various
failure criteria, and much experimental work in describing material constants such
as Young's modulus and the Poisson ratio, relatively little work has been done to
direct the selection of an appropriate probability model, or to connect model
parameters to physically measurable values.

Probability models are often selected by choosing one of the standard analytical
models, such as the normal, exponential or Weibull models, and fitting the
parameters to experimental data. This paper discusses an alternate approach to
selecting a probability model. It is a method of deriving models that are consistent
with physical laws and established engineering judgement. Similarly, the approach
illustrates a technique for determining the physical assumptions that are implied by
assuming a particular probability model. The work is foundational in nature, but
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applications to failure analysis for isotropic materials are given. Because of this, the
results are relevant to a wide variety of structural engineering problems.

2. Problem Definition

Frequently, a critical point (CP) of failure is identified in a component, and the
probability of failure p(feil) for the component is taken to be the probability of
failure at the CP. Assume for the time being, that the CP has been identified, and
that information regarding the probable states of stress S is available. The

probability that the material will fail can then be found by applying the law of total
probability

pfail) = [ p(sail| S) AS) dS,

where p(S) d_f_f AS)dS is the probability of being in a given stress state S, with

probability density AS). The problem is to understand how the components of this
generic probability model relate to the underlying question of material failure. The
present work restricts its attention to yielding under static loading. We intend to
extend the techniques. however, to dynamic loading conditions in future work.

First consider the probability model p(S) for the stresses S which are applied to
the CP. One factor that is important in determining a successful model is historical
or design data. Two other factors which are equally important are one, the physical
design and symmetries of the material near the CP, and two, the choice of
coordinates for expressing the state of stress. For instance, many failure criteria
use information about S in terms of the principal stresses ( ¢,, 65, 63 On the
other hand, sensors may report information regarding the observed strains or
stresses ( 0,, T,, ) In addition, there may be information regarding the orientation
of the principal stresses, which may be expressed relative to the Euler angles
(@, 8, p)of the principal stress directions. A successful probability model for the

state of stress p(S) will take into consideration each of these data requirements.
There are difficulties in constructing such a model, however.

1) The maximum stress criteria and von Mises criteria are most simply expressed in terms of 3
coordinates—the principal stresses, even though more complicated forms which are expressed in

terms of 6 coordinates- ( o, Toy» )
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A general state of stress for an isotropic material is 6 dimensional quantity.
Therefore, the probability model should have six degrees of freedom. But more than
6 coordinates have been identified as relevant to the problem of stress, including
the principal stresses, measurements, and principal stress directions. Section 3
describes how to encapsulate the information available about each of these
parameters into a single coherent probability model by discussing stress states of
linear elastic isotropic materials in 2 and 3 dimensions.

Consider next the probability of material failure under a particular state of stress,
p(fail] S). This probability is often taken to be 0 or 1, depending on whether the
selected failure criterion predicts failure. For instance, with the von Mises criterion,
failure is predicted with probability 1 if the distortional strain energy exceeds a
given parameter @ If @is not known, however, p(faill S) may be any value [0,1]
Lindquist' derives a Weibull-type model for @ and in Section 4 we discuss and
extend the result by indicating what assumptions on the material are implied by
assuming different parameter values in the Weibull model.

3. Probability Models for an Observed Stress

In this section, we examine by way of two examples, the translation of
engineering statements about material stresses into probability models. In the first
example, planar stresses are analyzed, and the second example treats stresses in
3-dimensional materials. Both examples make a similar assumption, namely, it is
assumed that the principal stresses are equally likely to come from any direction. In
the plane, this means that the principal stress coordinate frame is rotated uniformly
from 0 to = radians. A similar statement holds for 3-dimensional materials.

In both cases, the goal is to find a probability model which is parametrized in
terms of some observation (such as ¢,, 7, ) and the principal stresses. The model
must satisfy the additional assumption regarding the randomness of the principal
stress directions. Such a model can then be used to update the probability of
failure, given that certain measurements have been made. For instance, it may be
of value to calculate

p(fail] o) = [paill S, 6. IAS| 0.)dS.

Since o, is information which is contained in the stress tenser S, the formula can
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be slightly simplified as shown in the equation

wfaill 0.)= [ Ksaill HAS| 0,)ds.

3.1 Planar stress states
A planar stress tensor has three degrees of freedom, (o, o, r,) Equivalently,
these degrees of freedom may be specified by the principal stresses and a rotation

angle specifying their direction (o; o, ¢) This notation is summarized on a sketch
of the familiar Mohr circle(Figure 3.1).

Figure 3.1 A Mohr circle for an arbitrary planar stress.

The statement that ¢ is randomly selected is the same as saying that ¢ is
uniformly distributed on (0,n). It also implies that the rotation angle ¢ is
independent of the principal stresses. If the joint probability of the principal stresses
is given by Ao, 0y)do,do; the probability of observing a given state of stress is
then

NS =p(0,, 69, %)
=pl oy, 05 | )p(P)
= p( 64, 03)(¢)

- Lo dd) oL %) 4o doy .
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Measurements of a planar state of stress are typically made in terms of «r,,

0. Or o, rather than the rotation angle. Assume the observation r,, has been
made. To make predictions about the principal stresses given this information,
rewrite p(S) in terms of the coordinates (oy o0y t,) This can be done by the

Jacobian rule for probability densities and the formulas

Ty = (02— 07) cos ¢ sin @
doydoydr,, = (0, — 01) cos (2¢) doy do, dp.

Since sin(2¢) = r,,/| 0,— 0 |/Zhe probability model can be written

-1/2
dO'lddszxy (1

2
1 - T

[-52)
2

where the stress tensor S is expressed in terms of (o), 0y, 7))

Koy,05)

(03— o7

p(S) =

Although there is a great deal of freedom in modeling the strength of the
principal stresses with an arbitrary A ¢,, 0,)d 0,d 63 the rest of the probability
model is determined by the assumption that the principal stress directions are
completely random. Any model which can be written in the form of Equation (1) is
consistent with this assumption, and any model which can not be expressed in this
form is not consistent with the assumption. In this sense, we have derived
Equation (1) based on the physical assumptions of the problem. This probability
model does not normally appear in introductory probability texts, but it has been
described before. It is a special case of the /,-isotropic probability model discussed
in Mendel’.

The same process produces a similar result if o, is the given data, rather than

7. In Equation (1), replace =, with o¢,—| 0,+ 03|/2and dr, with do, This
result is easily seen relative to the Mohr circle, since r,, and o,—| o,+ o,l/2are
coordinates for the 2-d state of stress, whose distance is a constant from the
center of the Mohr circle.

The above models break down when the principal stresses are the same,
o,= o, This special case, however, represents a pure hydrostatic stress, and is

handled in a straightforward manner by most criteria for failure.
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3.2 General stress states

A more complicated problem is that of general stress in a solid, isotropic
component. Here, there are six degrees of freedom, often specified by the
observable stress tensor components (o,, 0,, 0., Tx, Tz, Ty) Alternately, the

stress tensor can be specified by the principal stresses (o) 0y 03) and their

directions. Since these directions are orthogonal, they can be specified by the Euler
angles (¢, 0, $in 3 dimensions. In this section, we derive a probability model
which is consistent with the notion that the 3 principal stress directions may be
oriented randomly. This is the same as saying that the set of all stress tensors
with the same principal stresses should somehow be 'uniformly’ distributed. The
model will be expressed in terms of the principal stresses and three observable
stress components to facilitate inference on the probability of failure once the value
of some, but not all, stress components are known.

We analyze first what is meant by a random orientation. The Euler angle triple,
(¢, 6, ¢)represents a rotation of ¢=(— x, x) radians about the z-axis, followed by
a rotation of 6O=(0, m) about the new x-axis, and then a rotation of ¢=(—nx, n)
about the new z-axis. Each Euler angle rotation can be thought of as an
orientation for the principal stress directions, and it can be shown (Miles®) that a
random orientation is given by

5,6, 9) =~817 sin 6dpdody,

where the constant normalizes the probability to 1.
Therefore, a complete probability model is given by

#S) = L(‘-’lég‘;z—“’?—)- sin 6 d6, d6,d6sdpd6dy,

where f (6,, 05, 03)is any probability density for the principal stresses. Again,
proceed using the Jacobian rule to replace the angle measurements with observables
from the stress matrix. This gives the following conditional probability model for
0., Txz» Tye conditioned on knowing the values of the principal stresses:

do,dr,,dr,,
872(6,— 0,)(6,— 03)(02— 03)sin2¢ sin’¢

p(GZv Tny Tyz I Gl! 02; 03) =
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The complete model is therefore

f (01, 09, 03) doydoy dor do, dr ., dr y,

o) = 87%( 0, — 6,)(01— 03)(02~ 03)sin2¢ sin’¢

— £ 0y, Oz, 03) do, do, dos dO'szxde'yz
16”2(“0’120’230’31)”2 ’

where the stress tensor S is parametrized in terms of the principal stresses and
three observables, o¢,, 7,,, 7y, and the «; are given by

2
a ;= (0,—0)(0;— 0,) + 1%+ 7%,

A derivation of this is due to Tsai’.

Once again, this model gives the entire class of probahility distributions which
are consistent with the assumption that the principal stresses may come from any
direction whatsoever with equal probability. It also enables the inference on the
probability of structural failure by giving a conditional probability model for
observables in terms of the principal stresses. Bayes rule can be applied to
calculate the probability of failure given the observables. This is particularly helpful
in a dynamic environment where preventative action may be taken if an undesirable
situation arises.

Notice that the model presented here is not valid some of the principal stresses
are the same, because a division by 0 would be required. This is handled by two
cases. First, suppose that all three principal stresses were the same. This
represents the case of pure hydrostatic stress, and no special probability model is
required. If exactly two of the three principal stresses are the same, there are only
4 degrees of freedom to the stress tensor. Two of the degrees of freedom are
0= oyand o3, the other two being the principal stress direction for o3, which can

be given by the first two Euler angles( ¢, 8). The ¢ is neglected because rotations
in the oy, 0y stress plane result in the same stress tensor. The general model which

satisfies the given assumptions is therefore

D(S] o= 0'2) = i‘(%@)sinﬁddl d0'3d¢d6.

4. Probability Models for Failure Given the Stress
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Consider the problem of describing the probability of failure given that a certain
state of stress is applied to it. Timoshenko’ presents a number of criteria as a
basis, including the maximum stress, maximum strain, maximum shearing
stress(Tresca), and maximum distortion energy (von Mises-Hencky) criteria. At
face value, these criteria predict failure if their parameter exceeds a certain critical
level. For instance, with the von Mises criterion, material failure is predicted if the
total distortion energy Uy exceeds the mean distortion energy capacity 8 of the

material. This section discusses two different approaches to determine what
should be, and describes the connection between the parameters of these models
and hidden assumptions regarding the distribution of distortion energy in a material.
For the sake of preciseness, assume the problem is that of studying the failure of
a ductile, linear, isotropic material with the von Mises criterion.2) In this case, the
model predicts material failure if the total distortion energy exceeds the mean
distortion energy capacity 6 of a material.

If the mean distortion energy capacity 6 of a material were known precisely, the
von Mises model for failure p(fail| S) could be modeled as

1 lf Udistze
0if Uge<80 °

p(faill S) =
However, since variability in material strength exists due to the variability of
material properties or potential flaws and cracks, 6 cannot be specified by a fixed
value. Further, there may be restrictions on the amount of uniaxial stress test data
which is available for estimating 6.
A probability model can be used to describe this inherent uncertainty regarding
6. With such a model for 6, the probability of failure can be rewritten as

p(fail] S) = p(6= Ugq).

Weibull® proposed the following model which is applied to a wide variety of
problems in engineering, including the determination of a probability density for
vielding stress, and in turn for 6. The model gives the probability for component
failure under a uniaxial stress X, and has 3 parameters as seen in the equation

2) Note that although the von Mises criterion is discussed in particular, a similar analysis for the
other failure models can be made.
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(x= %)™

x| x,, m,xy) = xﬂ(x— X5) m_lexp(—
0 X0

)dx. @)

Here, x, is the zero strength, measured in units of stress, m is a shape parameter
for the model, and %, is correlated with 4. 3

Although Equation (2) is largely motivated by engineering judgement, Weibull
admits that the function (x—x,)"/x,was chosen in an ad hoc fashion. His criteria
was to choose a function that disappears at the zero strength =x,, is easy to write,

and is positive and non-decreasing. He did not see a way to derive, from
engineering judgements, any of these 3 parameters.

Recently, Lindquist’ proposed that the function in the exponent of Equation (2)
can be derived from assumptions about how distortion energy is distributed in a

material. In particular, he shows that the function (x—x,)"™/x¢is more reasonably

written as (x®— x2)/(6G@) where G is the shearing modulus. This differs in two
ways from Weibull’'s equation. First, the exponent applies to the individual terms
rather than their difference, and second, the parameters are identified with
physically meaningful quantities —x, is shown to be a function of the shearing
modulus and the mean distortion energy capacity, and m is 2 because distortion
energy is proportional to the square of the uniaxial stress (e« = & /6G). Here,
%% /(6G) is interpreted as the minimum distortion energy capacity of a material.

It is useful to tersely summarize Lindquist’s derivation before making additional
comments. First, assume that a batch of material is sufficiently large to make N
stress test rods. If rod i breaks with distortion energy u; due to the uniaxial

stress ¢, then the average distortion energy is

From Mendelz, the following likelihood is derived for the first n test rods,
conditioned on the average density. Note that we maintain the assumption that a

rod never fails with a distortion energy less than e, = 02 /6G.

3) The parameters are traditionally found by statistical parameter estimation of Bayesian
inference based on Equation (2) and a set of uniaxial stress test data taken from experiment
with sample rods.
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N—-1
(ui-‘/—eu)

1____’_=_1__A_[6_Jul...dun.

p(ul Uy | 6) = CN

The proportionality factor ¢, normalizes the probability to 1. For very large batch

sizes, and with a change of variables, this model can be approximated by the
exponential function given in the equation

2 2
0i __0iT0u_
19(0'1 ..... Oy I 0) =c ﬁl GGg_ 0'3 exp( 6G0“‘ O.i

) do,--do,. (3)
This derivation explicitly points out that a slightly modified form of Weibull's
distribution is required, given certain physical considerations and the assumption
that average distortion energy alone is relevant to predicting failure.

Although many strong assumptions were made in this section, there are several
interesting points which arise as results of the derivation of Equation (3). First, we
reiterate that Weibull chose the function (x—x,)"/ xysomewhat arbitrarily, although
it possesses many qualitative features which seem to match the problem of failure
prediction. Next, Lindquist has shown how a slightly modified form of Weibull’'s
function can be derived from the physical notion of average distortion energy. In
this framework, parameters assume an operational meaning. In addition, we see that
if the new model’s analog of m is assumed to be something other than 2, the
notion that average distortion energy in the samples is relevant to the failure
criterion is violated. This may indicate that another quantity, such as the average
applied stress when m = 1, is relevant, or that there are additional factors involved
with the failure process. This seems to be the case for non—ductile, nonlinear, or
non-isotropic materials, where standard statistical fitting techniques have given
values for m over a wide range (say, from 2 to 26). Additional parameters,
therefore, may be required to model the probability of failure in these cases. In any
event, other probability models certainly make physical assumptions about the
failure process, although they may be more difficult to mathematically describe.

5. Conclusions

Although the models developed in this paper made strong assumptions which do
not apply to all structural reliability problems, several widely applicable conclusions
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may be drawn. One, it is possible to convert physical properties and engineering
judgements into classes of probability models. It is not necessary to arbitrarily
select them. In the case here, a statement about principal stress directions was
used to derive a class of models. A key tool is the Jacobian rule for probability
densities, which permits engineering statements to be preserved regardless of the
coordinate system chosen to express them. Two, parameters in a probability or
statistical model have meaning relative to the engineering assumptions that apply to
a system. In particular, we saw how the Weibull parameters for a material strength
model relate to the way strength is assumed to be distributed through a collection
of components made from the same material. Much work remains to be done,
however, in deriving other model types and determining the physical assumptions
inherent in other probability models Three, it is unnecessary to base models on
parameters which have an abstract and non-measurable definition. All of the
parameters derived here have meaning relative to the problem of structural
reliability. To be sure, for the sake of computational efficiency, it may be simpler
to use such an abstract parameter. However, the use of such a parameter does
make hidden assumptions about the physics of the problem.
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