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Abstract. In reliability engineering, the bathtub-shaped hazard rates play an
important role in survival analysis and many other applications as well. For the
bathtub-shaped, initially the hazard rate decreases from a relatively high value due to
manufacturing defects or infant mortality to a relatively stable middle useful life
value and then slowly increases with the onset of old age or wear out.

In this paper, we present a new two-parameter lifetime distribution function, called
the Loglog distribution, with Vtub-shaped hazard rate function. We illustrate the
usefulness of the new Vtub-shaped hazard rate function by evaluating the reliability
of several helicopter parts based on the data obtained in the maintenance malfunction
information reporting system database collected from October 1995 to September
1999. We develop the S-Plus add-in software tool, called Reliability and Safety
Assessment (RSA), to calculate reliability measures include mean time to failure,
mean residual function, and confidence intervals of the two helicopter critical parts.
We use the mean squared error to compare relative goodness of fit test of the
distribution models include normal, lognormal, and Weibull within the two data sets.
This research indicates that the result of the new Vtub-shaped hazard rate function is
worth the extra function-complexity for a better relative fit. More application in
broader validation of this conclusion is needed using other data sets for reliability
modeling in a general industrial setting.

Key Words : hazard rate, Vtub-shaped failure rate, component reliability function,
loglog distribution, bathtub-shaped failure rate.

1. INTRODUCTION

In today’s technological world nearly everyone depends upon the continued functioning of
a wide array of complex machinery and equipment for their everyday safety, mobility and
economic welfare. We expect our electric appliances, lights, safety-critical parts, hospital
monitoring control room, etc. to function whenever we need them. When they fail the
results can be catastrophic; injury or loss of life. Reliability is the probability that a
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product or part will operate properly for a specified period of time under the design
operating conditions such as temperature, volt, humidity, stress level, etc., without failure.

In reliability engineering, the bathtub-shaped hazard rates play an important role in
survival analysis and many other biological applications. For the bathtub-shaped, initially
the hazard rate decreases from a relatively high value due to manufacturing defects or
infant mortality to a relatively stable middle useful life value and then slowly increases
with the onset of old age or wear out. This behavior can be observed in human life,
electronic system products, and many others.

In the last two decades, many authors [Mann, Schafer and Singpurwalla,1974; Smith and
Bain,1975; Gaver and Acar,1979; Mudholkar and Srivastava,1993; Block & Joe,1997;
Wang, Muller & Capra,1998; Aalen & Gjessing,2001] have been proposed lifetime
distributions with various bathtub-shaped failure rates. For example, Mann, Schafer and
Singpurwalla [1974] proposed mixtures of Weibull distributions; Smith and Bain [1975]
proposed the exponential power distribution; Gaver and Acar [1979] presented a four-
parameter bathtub-shaped failure rate function; Mudholkar and Srivastava [1993]
proposed a simple generalization of the Weibull family called the exponentiated-Weibull
family with three parameters. Such exponentiated-Weibull distribution is well suited for
modeling bathtub shaped failure rate lifetime data. Aalen & Gjessing [2001] recently
discussed the shaped of various hazard rates including bathtub-shaped hazard rate.

In this paper, we present a new lifetime distribution function with two parameters, called
the Loglog distribution. The corresponding hazard rate of the new distribution, called the
Vtub-shaped hazard rate, not only includes distributions with bathtub, increasing and
decreasing failure rates, but also provides a broader class of monotone fatlure rates.

The Vtub-shaped hazard rate is defined as: If there exists a change point t, such that the
hazard rate h(t) is decreasing in [0, to] and slowly increasing, as a Vtub-shaped, in [t;, ).

We illustrate the usefulness of the new Vtub-shaped hazard rate function by evaluating the
reliability of several helicopter parts based on the data obtained in the Maintenance
Malfunction Information Reporting (MMIR) system database collected from October
1995 to September 1999. We also develop the S-Plus add-in software tool, called
Reliability and Safety Assessment (RSA), to calculate reliability, mean time to failure,
failure rate function, mean residual life, and confidence intervals of the two helicopter
main rotor blade and rotor blade assembly parts.

2. RELIABILITY MEASURES

Acronyms
MTTF Mean time to failure
MMIR Maintenance Malfunction Information Reporting

FAA Federal Aviation Admuinistration
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2.1 Vtub-Shaped Hazard Rate

We present a new two-parameter lifetime distribution, called the Loglog distribution, with
parameters a and c. Let ¢, ¢, ,..., {, be failure times of a random variable having a

density function as follows:

a

f()=a-ma-1*"-a" ™ for t>0,a>0,a>1 )
Then the loglog distribution and reliability functions are

FO)= [ fxdx —1-e"
and

R(@t) =€ @
respectively. The corresponding hazard rate of the new distribution, called the Vtub-
shaped hazard rate, is

)=a-Ina-1*"-a" 3)

Figures 1 and 2 (both a and b) describe the density function and hazard rate function for

various values of a and a.

The Vtub-shaped and bathtub-shaped hazard rates are not the same. As for the bathtub-
shaped, for example, after the infant mortality period, the useful life of the system begins.
During its useful life, the system fails as a constant rate. This period is then followed by a
wear out period during which the system starts slowly increases with the on set of wear
out. But for the Vtub-shaped, after the infant mortality period, the system starts to
experience at a relatively low increasing rate, but not constant, and then increasingly more
failures due to aging.

Figure 1. (a) Probability density function with g=2
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Figure 1. (b) Probability density function with o =1.5

Figure 2. (a) Hazard rate function with a=2
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Figure 2. (b) Hazard rate function with a =1.5

Note that the distribution F is an increasing failure rate (IFR) if the hazard rate A(f) is an
increasing function of t. Similarly, F is a decreasing failure rate (DFR) if A(f) is a
decreasing function of t. ‘

Definition: The distribution F has a Vtub-shaped failure rate if there exists a change point
to such that the distribution F is DFR for ¢ <¢, and IFR for ¢ 2 ¢,.

Result: For any given a and &, the loglog distribution F is DFR for ¢ <¢, and IFR for

t2t,, where
1
-« Ve
()

alna
Proof: From equation (3), upon differentiation, we obtain

1) = (@na)(a“t*?)[(a~1)+amna-1*]

Set h’(t)=0 and after simplifications, we obtain

(1_(1)%
t= =1,
alna

It easily follows that the sign of A'(¢) is determined by (a¢—1)+alna-t* which is

negative for all # <¢, and positive for all ¢ 2 ¢,. Therefore, A(¢) is initially decreasing and
then increasing in t.
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It is easy to see that when ¢ =1 the distribution F is an IFR.

2.2 The Mean Residual Life

The mean residual life function is the expected remaining life, 7—¢, given that the item has
survived to time ¢. Mathematically, the mean residual life function, MRL(t), is given by

MRL(t)=E[T -t|T 21t], t>0 (5)

The above equation can be rewritten in terms of hazard rate as follows
[T h(ryae
fe k dx
MRL(t)=—7——0, t>0
-[ Ao
e 0
From equation (3),

B P
re k dx

t a
~I alnax®'a® dx
[

MRL(2) =

e
After simplifications, we obtain

a1 1-a*"
MRL(t) = e( ) f e( )dx, t>0
When t=0, the mean residual life becomes the mean time to failure (MTTF), that is,

MRL(O)= [ e~ dt = MTTF

3. PARAMETER ESTIMATION

We now wish to estimate the values of a and & using the maximum likelihood estimation
(MLE) method. From equation (1), the likelihood function is

n l'q .
La,a)=][alna-f"e"" af
i=1
G it,“ n—}n:a"q

:a"(lna)"(Ht,) a™ e ™
i=1

The log likelihood function is
log L(a,x) = nloga+n1n(1na)+(a-—1)(21ntij+lna Zt,“ +n—2a"’a (6)

i=1 i=1 i=1
The first derivatives of the log likelihood function with respect to a and « are,
respectively,
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L Zt Zt“ £ (7)

ilog L(a,a) =
oa alna a 5

and
ailogL(a,a)=ﬁ+21nt,.+1na-21nz,.-t;*—Zt;’-a’f’-1na-1nt,. (8)
a a i i=1 i=1

Set the equations (7) and (8) equate to zero, we can obtain the MLE of a and a by solving
the following simultaneous equationS'

L t Zta"":

Ina ‘o

-”-+Zlnz,.+1na-21nt,.-t;’(1-a'f’)=0

a i i=1
After rearrangements, we obtain
n
Ina) ¢ (a ’
i=1

lna-Zn:lnt,. -t7 -(a"’a —1)——’—1-=ilnti
i=1 o q

|
[SE
N——
Il
=

We next determine the confidence intervals for parameter estimates a and c. For the log-
likelihood function in (6), we can obtain the Fisher information matrix H as

H{”“ hu}
h21 h22

where

o’ logL 0% logL 0’ logL
hu:E[—_a—c'l_z—:l»hu:hzl:E[__éa_aa“' ,h22=E - Py .

The variance matrix, ¥, can be obtained as follows

v=[H]" =[v“ v”] ©)

Vor YV
The variances of a and « are
Var(a)=v,, Var(a) =v,,

One can approximately obtain the (1-£)100% confidence intervals for a and o based on

the normal distribution as  [d—2zp\V,, ,@+2zp\v,, ] and [Q —zs\V,, , @+2zpV,, ],
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respectively, where v; is given in (9) and zp is (1-£3/2)100% of the standard normal
distribution.

After we obtain @ and &, the MLE of reliability function can be computed as
R@py=e"
Let us define a partial derivative vector for reliability R(¢) as

w20 280

then the variance of R(¢) can be obtained as follows:

Var[R(t)] =MR®]-V - (MR®)]) (10)

where V is given in (9).

One can approximately obtain the (1-£)100% confidence interval for R(¢) is

[R(t)—z,;,/Var[R(t)] , R@®)+zpVar[R®)] 1.

4. APPLICATIONS

Heliports continued to play a pivotal role in our society world. Just as persons are hard
pressed to thrive without the benefits of a home, helicopters are hard pressed to thrive
without the benefits of a place to land and re-fuel. We need to continue to do our best to
support the construction and use of heliports in areas where vertical flight is more
useful—namely urban centers [Rotor,2001].

One of the first uses for helicopters involved carrying individuals in need of medical care
to medical facilities. Rotorcraft operators, of course, were able to do this with amazing
speed. With this history of saving lives, today’s rotorcraft can do the job even more
quickly and with enhanced medical capabilities. After all, when it comes to saving lives,
every second counts.

The helicopters community recently strives to improve communications regarding safety
concerns within the air medical industry and solve problems that develop with governing
and regulator agencies. Air medical flights are a highly favorable form of vertical flight in
the public eye. Though some people insist on complaining when helicopters rush injured
persons to hospitals at night, most people admire life saving rotorcraft operations.

Recently, the Federal Aviation Administration (FAA) and the Helicopter Association
International (HAI) have jointly developed the Maintenance Malfunction Information
Reporting (MMIR) system for the aviation industry [MMIR,1998]. MMIR is a web-based
database tool that will provide crucial information for trend monitoring. Users of MMIR
can search a database of more than 75,000 reported parts and generate a report of past
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experience with particular parts. The main thrust of the MMIR database program is to
enhance aviation safety and reliability analysis. The MMIR program has the potential to
provide the aviation industry with much needed data that would otherwise be unavailable,
enhancing the overall progress in aviation safety and reliability studies.

Accurate prediction of reliability plays an important role in the profitability of a product
and in the service industry. Service costs or repair costs for helicopter parts with the
warranty period or under a service contract are a major expense and a significant pricing
factor. Proper spare part stocking and support personnel training also depend upon good
reliability fallout predictions. On the other hand, missing reliability targets may invoke
contractual penalties and cost future business.

We illustrate the usefulness of the new Vtub-shaped hazard rate function by calculating
reliability measures of two helicopter parts: main rotor blade and rotor blade assembly
based on the MMIR system database collected from October 1995 to September 1999. We
obtain the results by using our software RSA. The Main Rotor Blade data set and Rotor
Brake Assembly data set are shown in Table 1 and Table 2, respectively.

4.1 Application 1: Main Rotor Blade
Following are some estimation results based on the data set in Table 1 using RSA tool.

Summary for Loglog Distribution Model (Vtub-Shaped Hazard Rate Function):
O = 1.1075035 Var[@] = 0.0162444
95% CI for @ is [0.8576942, 1.3573128)

a = 1.0001629 Var[a] = 2.78202609e-008
95% CI for a is [0.9998360, 1.0004898]

MTTF = 1608.324131
MRL (£=MTTF) = 950.4751306

Figure 3 and 4 show the hazard rate function and reliability and its 95% confidence
interval of main rotor blade, respectively. Figure 5 shows the reliability comparisons
between the normal model, the lognormal model, the Weibull model and the loglog model
for the main rotor blade data set.

4.2 Application 2: Rotor Brake Assembly

This example shows the reliability estimation results based on the data set given in Table
2 using RSA software tool.
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Summary for Loglog Distribution Model
Q = 0.8822884 Var[Q@] = 0.0369422
95% CI for ¢ is [0.5055693, 1.2590075]

a = 1.0009176 Var[a] = 2.0577872e-006
95% CI for a is [0.9981060, 1.0037293]

MTTF = 1601.7326345
MRL (t=MTTF) = 1186.1544027

Figure 6 and 7 show the hazard rate function and reliability and its 95% confidence
interval of rotor brake assembly, respectively. Figure 8 shows the reliability comparisons
between the normal model, the lognormal model, the Weibull model and the loglog model
for the main rotor brake assembly data set.

Table 1. Main Rotor Blade Data

Part code Part(hours)
xxx-015-001-107 1634.3
xxx-015-001-107 1100.5
xxx-015-001-107 1100.5
xxx-015-001-107 819.9
xxx-015-001-105 1398.3
xxx-015-001-107 1181
xxx-015-001-107 128.7
xxx-015-001-107 1193.6
xxx-015-001-107 254.1
xxx-015-001-107 3078.5
xxx-015-001-107 3078.5
xxx-015-001-107 3078.5
xxx-015-001-107 26.5
xxx-015-001-107 26.5
xxx-015-001-107 3265.9
xxx-015-001-107 254.1
xxx-015-001-107 2888.3
xxx-015-001-107 2080.2
xxx-015-001-107 2094.3
xxx-015-001-107 2166.2
xxx-015-001-107 2956.2
xxx-015-001-107 795.5
xxx-015-001-107 795.5
xxx-015-001-107 204.5
xxx-015-001-107 204.5
xxx-015-001-107 1723.2
xxx-015-001-107 403.2

xxx-015-001-107 2898.5
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xxx-015-001-107 2869.1
xxx-015-001-107 26.5
xxx-015-001-107 26.5
xxx-015-001-107 3180.6
xxx-015-001-107 644.1
xxx-015-001-107 1898.5
xxx-015-001-107 3318.2
xxx-015-001-107 1940.1
xxx-015-001-107 3318.2
xxx-015-001-107 2317.3
xxx-015-001-107 1081.3
xxx-015-001-107 1953.5
xxx-015-001-107 2418.5
xxx-015-001-107 1485.1
xxx-015-001-107 2663.7
xxx-015-001-107 1778.3
xxx-015-001-107 1778.3
xxx-015-001-107 2943.6
xxx-015-001-107 2260
xxx-015-001-107 2299.2
xxx-015-001-107 1655
xxx-015-001-107 1683.1
xxx-015-001-107 1683.1
xxx-015-001-107 2751.4
Table 2. Rotor Brake Assembly data
Part.code Part(hours)
xxx-301-103 716.5
xxx-301-103 221.3
xxx-301-103 1076.6
xxx-301-103 1144.1
xxx-301-103 502.4
xxx-301-103 1557.2
xxx-301-103 552.1
xxx-301-103 1394.3
xxx-301-103 677.3
xxx-301-103 552.1
xxx-301-103 1622.4
xxx-301-103 3077
xxx-301-103 3077
xxx-301-101 4980.2
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Figure 3. Hazard rate function for a main rotor blade data set
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Figure 4. Estimated reliability and its confidence interval for a main rotor blade data set
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Figure 5. Reliability comparisons for a main rotor blade data set
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Figure 7. Estimated reliability and its confidence interval for a rotor brake assembly data
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