• Title/Summary/Keyword: gene expression data

Search Result 1,311, Processing Time 0.029 seconds

Spermidine Protects against Oxidative Stress in Inflammation Models Using Macrophages and Zebrafish

  • Jeong, Jin-Woo;Cha, Hee-Jae;Han, Min Ho;Hwang, Su Jung;Lee, Dae-Sung;Yoo, Jong Su;Choi, Il-Whan;Kim, Suhkmann;Kim, Heui-Soo;Kim, Gi-Young;Hong, Su Hyun;Park, Cheol;Lee, Hyo-Jong;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.146-156
    • /
    • 2018
  • Spermidine is a naturally occurring polyamine compound that has recently emerged with anti-aging properties and suppresses inflammation and oxidation. However, its mechanisms of action on anti-inflammatory and antioxidant effects have not been fully elucidated. In this study, the potential of spermidine for reducing pro-inflammatory and oxidative effects in lipopolysaccharide (LPS)-stimulated macrophages and zebrafish was explored. Our data indicate that spermidine significantly inhibited the production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$), and cytokines including tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$ in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects of spermidine accompanied by a marked suppression in their regulatory gene expression at the transcription levels. Spermidine also attenuated the nuclear translocation of $NF-{\kappa}B$ p65 subunit and reduced LPS-induced intracellular accumulation of reactive oxygen species (ROS) in RAW 264.7 macrophages. Moreover, spermidine prevented the LPS-induced NO production and ROS accumulation in zebrafish larvae and was found to be associated with a diminished recruitment of neutrophils and macrophages. Although more work is needed to fully understand the critical role of spermidine on the inhibition of inflammation-associated migration of immune cells, our findings clearly demonstrate that spermidine may be a potential therapeutic intervention for the treatment of inflammatory and oxidative disorders.

In vitro Anti-diabetic Effects of Crude Extracts of Platycodi Radix (In vitro에서 길경 추출 분획물의 항당뇨 효과 조사)

  • Ko, Byoung-Seob;Kwon, Dae-Young;Hong, Sang-Mee;Park, Sun-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.701-707
    • /
    • 2007
  • Anti-diabetic effect of Platycodi radix (PR) extract fractions was determined if vitro by investigating insulin-like action, insulin sensitizing action, glucose-stimulated insulin secretion, gene expression related to ${\beta}-cell$ function and mass, and ${\alpha}$-glucoamylase suppressing action. Insulin-like activity was not promoted by the treatment of PR methanol factions in 373-L1 fibroblast. However, treatment with 0, 20 and 100% PR methanol fractions along with 1 ng/mL insulin increased insulin-stimulated glucose uptake in 373-L1 adipocytes. In addition, the treatment of 0% and 100% methanol fractions along with differentiation inducers significantly increased the differentiation of 373-L1 fibroblasts to adipocytes. These fractions may contain insulin sensitizer. The 20%, 80% and 100% methanol fractions enhanced glucose-stimulated insulin secretion in Min6 cells, insulin secreting cell line. This was related to the mechanism to promote glucose sensing and ${\beta}-cell$ proliferation, which was regulated by the induction of IRS-2, glucokinase and PDX-1 genes. As expected, 20, 80 and 100% methanol fractions increased mRNA levels of IRS-2, glucokinase and PDX-1 genes. However, PR fractions did not affect the ${\alpha}-glucoamylase$ activity in vitro. These data suggested that PR extract fractions have anti-diabetic actions through improving insulin sensitization, glucose-stimulated insulin secretion, and ${\beta}-cell$ proliferation. Therefore, PR extracts can be beneficial for anti-diabetic treatment in lean diabetic patients.

Expression and Production of Human Granulocyte Colony Stimulating Factor (G-CSF) in Silkworm Cell Line (누에세포를 이용한 인간 G-CSF의 발현 및 생산)

  • Park, Jeong-Hae;Jang, Ho-Jung;Kang, Seok-Woo;Goo, Tae-Won;Chung, Kyung-Tae
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1577-1581
    • /
    • 2010
  • Granulocyte colony stimulating factor (G-CSF) is a hematopoietic cytokine that stimulates bone marrow cells to proliferate and differentiate into granulocytes. G-CSF is approved and used for therapeutic purposes. The endoplasmic reticulum (ER) signal peptide of hG-CSF was replaced with silkworm-specific signal peptides to express and efficiently secrete recombinant hG-CSF by silkworm cells. Plasmids that contain cDNAs for hG-CSF and hG-CSF fused with silkworm- specific signal peptides of prophenoloxidase activating enzyme (PPAE), protein disulfide isomerase (PDI), and bombyxin (BX) were constructed. The G-CSF protein was expressed in insect cell line BM5 and was detected by western blot analysis. The cells transfected with plasmids containing rhG-CSF genes with silkworm-specific signal sequences released mature rhG-CSF protein more efficiently than the cells transfected with pG-CSF, the plasmid containing human G-CSF gene, including its own signal sequence. The production of hG-CSF reached maximal level at four days post-transfection and remained at a high level until 7 days post-transfection. These data demonstrate that the modification of the human G-CSF mimic to insect proteins synthesized in ER greatly improves the production of the protein.

Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots

  • Jayakodi, Murukarthick;Lee, Sang-Choon;Park, Hyun-Seung;Jang, Woojong;Lee, Yun Sun;Choi, Beom-Soon;Nah, Gyoung Ju;Kim, Do-Soon;Natesan, Senthil;Sun, Chao;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.38 no.4
    • /
    • pp.278-288
    • /
    • 2014
  • Background: Panax ginseng Meyer is a traditional medicinal plant famous for its strong therapeutic effects and serves as an important herbal medicine. To understand and manipulate genes involved in secondary metabolic pathways including ginsenosides, transcriptome profiling of P. ginseng is essential. Methods: RNA-seq analysis of adventitious roots of two P. ginseng cultivars, Chunpoong (CP) and Cheongsun (CS), was performed using the Illumina HiSeq platform. After transcripts were assembled, expression profiling was performed. Results: Assemblies were generated from ~85 million and ~77 million high-quality reads from CP and CS cultivars, respectively. A total of 35,527 and 27,716 transcripts were obtained from the CP and CS assemblies, respectively. Annotation of the transcriptomes showed that approximately 90% of the transcripts had significant matches in public databases.We identified several candidate genes involved in ginsenoside biosynthesis. In addition, a large number of transcripts (17%) with different gene ontology designations were uniquely detected in adventitious roots compared to normal ginseng roots. Conclusion: This study will provide a comprehensive insight into the transcriptome of ginseng adventitious roots, and a way for successful transcriptome analysis and profiling of resource plants with less genomic information. The transcriptome profiling data generated in this study are available in our newly created adventitious root transcriptome database (http://im-crop.snu.ac.kr/transdb/index.php) for public use.

Molecular Dynamics Simulation Study for Ionic Strength Dependence of RNA-host factor Interaction in Staphylococcus aureus Hfq

  • Lazar, Prettina;Lee, Yun-O;Kim, Song-Mi;Chandrasekaran, Meganathan;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1519-1526
    • /
    • 2010
  • The behavior of peptide or protein solutes in saline aqueous solution is a fundamental topic in physical chemistry. Addition of ions can strongly alter the thermodynamic and physical properties of peptide molecules in solution. In order to study the effects of added ionic salts on protein conformation and dynamics, we have used the molecular dynamics (MD) simulations to investigate the behavior of Staphylococcus aureus Hfq protein under two different ionic concentrations: 0.1 M NaCl and 1.0 M NaCl in presence and absence of RNA (a hepta-oligoribonucleotide AU5G). Hfq, a global regulator of gene expression is highly conserved and abundant RNA-binding protein. It is already reported that in vivo the increase of ionic strength results in a drastic reduction of Hfq affinity for $Q{\beta}$ RNA and reduces the tendency of aggregation of Escherichia coli host factor hexamers. Our results revealed the crucial role of 0.1 M NaCl Hfq system on the bases with strong hydrogen bonding interactions and by stabilizing the aromatic stacking of Tyr42 residue of the adjacent subunits/monomers with the adenine and uridine nucleobases. An increase in RNA pore diameter and weakened compactness of the Hfq-RNA complex was clearly observed in 1.0 M NaCl Hfq system with bound RNA. Aggregation of monomers in Hfq and the interaction of Hfq with RNA are greatly affected due to the presence of high ionic strength. Higher the ionic concentration, weaker is the aggregation and interaction. Our results were compatible with the experimental data and this is the first theoretical report for the experimental study done in 1980 by Uhlenbeck group for the present system.

Effects of HPL-04 on Degenerative Osteoarthritis (퇴행성 골관절염에 대한 HPL-04의 효과)

  • Na, Ji-Young;Song, Ki-Bbeum;Kim, Sukho;Kwon, Young-Bae;Kim, Dae-Gi;Lee, Jun-Kyoung;Jo, Hyoung-Kwon;Kwon, Jungkee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.30-39
    • /
    • 2014
  • HanPoong Leading (HPL)-04 were prepared with different oriental medicines (balk of Kalopanax pictus balk, Chaenomelis Fructus, Angelica gigas root, Zingiber officinale, Raphanus sativus Linne and Saururus chinensis Baill.) to investigate the protective effects of HPL-04 on cartilage degradation in knee osteoarthritis (OA). Rat articular chondrocytes incubated with rhIL-$1{\alpha}$ markedly increased matrix metalloproteinase (MMP)-2 and 9 activities, decreased cell viability and reduced chondrogenic gene expression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, MMP-2 and 9 activities and real time RT-PCR indicated that HPL-04 counteracted these harmful effects in dose-dependent manner. In addition, for experimental OA in vivo, monosodium iodoacetate (MIA, 0.5 mg/50 ${\mu}L$) was injected into knee joints of rats and administered HPL-04 to rats for 4 consecutive weeks after MIA treatment. The experimental data showed that treatment with HPL-04 significantly prevented of MMP-2 and 9 activities in articular cartilage. Histopathological and micro-CT evaluations of the knee joints also revealed that HPL-04 effectively ameliorated MIA-induced degenerative OA. In conclusion, HPL-04 has potential applicability for the prevention and treatment of degenerative OA.

Comparative analysis of the transcriptomes and primary metabolite profiles of adventitious roots of five Panax ginseng cultivars

  • Lee, Yun Sun;Park, Hyun-Seung;Lee, Dong-Kyu;Jayakodi, Murukarthick;Kim, Nam-Hoon;Lee, Sang-Choon;Kundu, Atreyee;Lee, Dong-Yup;Kim, Young Chang;In, Jun Gyo;Kwon, Sung Won;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.60-68
    • /
    • 2017
  • Background: Various Panax ginseng cultivars exhibit a range of diversity for morphological and physiological traits. However, there are few studies on diversity of metabolic profiles and genetic background to understand the complex metabolic pathway in ginseng. Methods: To understand the complex metabolic pathway and related genes in ginseng, we tried to conduct integrated analysis of primary metabolite profiles and related gene expression using five ginseng cultivars showing different morphology. We investigated primary metabolite profiles via gas chromatography-mass spectrometry (GC-MS) and analyzed transcriptomes by Illumina sequencing using adventitious roots grown under the same conditions to elucidate the differences in metabolism underlying such genetic diversity. Results: GC-MS analysis revealed that primary metabolite profiling allowed us to classify the five cultivars into three independent groups and the grouping was also explained by eight major primary metabolites as biomarkers. We selected three cultivars (Chunpoong, Cheongsun, and Sunhyang) to represent each group and analyzed their transcriptomes. We inspected 100 unigenes involved in seven primary metabolite biosynthesis pathways and found that 21 unigenes encoding 15 enzymes were differentially expressed among the three cultivars. Integrated analysis of transcriptomes and metabolomes revealed that the ginseng cultivars differ in primary metabolites as well as in the putative genes involved in the complex process of primary metabolic pathways. Conclusion: Our data derived from this integrated analysis provide insights into the underlying complexity of genes and metabolites that co-regulate flux through these pathways in ginseng.

Apoptotic Effects of Curcumin and EGCG via Akt-p53 Signaling Pathway in HCT116 Colon Cancer Cells (HCT116 대장암 세포에서 Akt-p53 신호경로를 통한 커큐민과 EGCG의 apoptosis 효과)

  • Park, Song-Yi;Lee, Sol-Hwa;Park, Ock-Jin;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.89-95
    • /
    • 2011
  • p53 is tumor suppressor gene that regulates apoptosis such as caspase-dependent and p21-mediated signaling pathways. PI3K/Akt is known to be over-activated in cancer cells. Akt activates many survival-related signals such as mTOR and COX-2. Inactivation of Akt would result in non-inhibition of p53 as well as induced apoptosis. In this study, we showed that curcumin and EGCG activate p53 via inhibition of the Akt signaling pathway. Treatments using curcumin and EGCG in different concentrations for 24 hr and 48 hr inhibited proliferation of HCT116 colon cancer cells and increased apoptotic cell death. Also, our data showed that curcumin and EGCG increased the p53 expression and decreased the p-Akt. Treatment of LY294002 (Akt inhibitor) resulted in decreased cell proliferation of cancer cells, while LY294002 treated with curcumin or EGCG showed a greater decrease of cell proliferation. In addition, inhibition of Akt induced p53 activation in HCT116 colon cancer cells. These results suggest that curcumin and EGCG induce apoptosis by inhibiting Akt and increase p53 in HCT116 colon cancer cells.

Characterization of Primary Epithelial Cells Derived from Human Salivary Gland Contributing to in vivo Formation of Acini-like Structures

  • Nam, Hyun;Kim, Ji-Hye;Hwang, Ji-Yoon;Kim, Gee-Hye;Kim, Jae-Won;Jang, Mi;Lee, Jong-Ho;Park, Kyungpyo;Lee, Gene
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.515-522
    • /
    • 2018
  • Patients with head and neck cancer are treated with therapeutic irradiation, which can result in irreversible salivary gland dysfunction. Because there is no complete cure for such patients, stem cell therapy is an emerging alternative for functional restoration of salivary glands. In this study, we investigated in vitro characteristics of primarily isolated epithelial cells from human salivary gland (Epi-SGs) and in vivo formation of acini-like structures by Epi-SGs. Primarily isolated Epi-SGs showed typical epithelial cell-like morphology and expressed E-cadherin but not N-cadherin. Epi-SGs expressed epithelial stem cell (EpiSC) and embryonic stem cell (ESC) markers. During long-term culture, the expression of EpiSC and ESC markers was highly detected and maintained within the core population with small size and low cytoplasmic complexity. The core population expressed cytokeratin 7 and cytokeratin 14, known as duct markers indicating that Epi-SGs might be originated from the duct. When Epi-SGs were transplanted in vivo with Matrigel, acini-like structures were readily formed at 4 days after transplantation and they were maintained at 7 days after transplantation. Taken together, our data suggested that Epi-SGs might contain stem cells which were positive for EpiSC and ESC markers, and Epi-SGs might contribute to the regeneration of acini-like structures in vivo. We expect that Epi-SGs will be useful source for the functional restoration of damaged salivary gland.

Whole genome MBD-seq and RRBS analyses reveal that hypermethylation of gastrointestinal hormone receptors is associated with gastric carcinogenesis

  • Kim, Hee-Jin;Kang, Tae-Wook;Haam, Keeok;Kim, Mirang;Kim, Seon-Kyu;Kim, Seon-Young;Lee, Sang-Il;Song, Kyu-Sang;Jeong, Hyun-Yong;Kim, Yong Sung
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.1.1-1.14
    • /
    • 2018
  • DNA methylation is a regulatory mechanism in epigenetics that is frequently altered during human carcinogenesis. To detect critical methylation events associated with gastric cancer (GC), we compared three DNA methylomes from gastric mucosa (GM), intestinal metaplasia (IM), and gastric tumor (GT) cells that were microscopically dissected from an intestinal-type early gastric cancer (EGC) using methylated DNA binding domain sequencing (MBD-seq) and reduced representation bisulfite sequencing (RRBS) analysis. In this study, we focused on differentially methylated promoters (DMPs) that could be directly associated with gene expression. We detected 2,761 and 677 DMPs between the GT and GM by MBD-seq and RRBS, respectively, and for a total of 3,035 DMPs. Then, 514 (17%) of all DMPs were detected in the IM genome, which is a precancer of GC, supporting that some DMPs might represent an early event in gastric carcinogenesis. A pathway analysis of all DMPs demonstrated that 59 G protein-coupled receptor (GPCR) genes linked to the hypermethylated DMPs were significantly enriched in a neuroactive ligand-receptor interaction pathway. Furthermore, among the 59 GPCRs, six GI hormone receptor genes (NPY1R, PPYR1, PTGDR, PTGER2, PTGER3, and SSTR2) that play an inhibitory role in the secretion of gastrin or gastric acid were selected and validated as potential biomarkers for the diagnosis or prognosis of GC patients in two cohorts. These data suggest that the loss of function of gastrointestinal (GI) hormone receptors by promoter methylation may lead to gastric carcinogenesis because gastrin and gastric acid have been known to play a role in cell differentiation and carcinogenesis in the GI tract.