Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.6.1519

Molecular Dynamics Simulation Study for Ionic Strength Dependence of RNA-host factor Interaction in Staphylococcus aureus Hfq  

Lazar, Prettina (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center (EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU))
Lee, Yun-O (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center (EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU))
Kim, Song-Mi (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center (EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU))
Chandrasekaran, Meganathan (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center (EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU))
Lee, Keun-Woo (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center (EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU))
Publication Information
Abstract
The behavior of peptide or protein solutes in saline aqueous solution is a fundamental topic in physical chemistry. Addition of ions can strongly alter the thermodynamic and physical properties of peptide molecules in solution. In order to study the effects of added ionic salts on protein conformation and dynamics, we have used the molecular dynamics (MD) simulations to investigate the behavior of Staphylococcus aureus Hfq protein under two different ionic concentrations: 0.1 M NaCl and 1.0 M NaCl in presence and absence of RNA (a hepta-oligoribonucleotide AU5G). Hfq, a global regulator of gene expression is highly conserved and abundant RNA-binding protein. It is already reported that in vivo the increase of ionic strength results in a drastic reduction of Hfq affinity for $Q{\beta}$ RNA and reduces the tendency of aggregation of Escherichia coli host factor hexamers. Our results revealed the crucial role of 0.1 M NaCl Hfq system on the bases with strong hydrogen bonding interactions and by stabilizing the aromatic stacking of Tyr42 residue of the adjacent subunits/monomers with the adenine and uridine nucleobases. An increase in RNA pore diameter and weakened compactness of the Hfq-RNA complex was clearly observed in 1.0 M NaCl Hfq system with bound RNA. Aggregation of monomers in Hfq and the interaction of Hfq with RNA are greatly affected due to the presence of high ionic strength. Higher the ionic concentration, weaker is the aggregation and interaction. Our results were compatible with the experimental data and this is the first theoretical report for the experimental study done in 1980 by Uhlenbeck group for the present system.
Keywords
Host factor protein-Hfq; Oligoribonucleotide; Post-transcriptional regulation; Molecular dynamics simulation; Ionic concentration;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926-935.   DOI
2 Essman, U.; Perela, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577-8592.   DOI
3 Berendsen, H. J. C.; Postma, J. P. M.; Di Nola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684-3690.   DOI
4 Parrinello, M.; Rahman, A. J. Appl. Phys. 1981, 52, 7182-7190.   DOI
5 Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comp. Chem. 1997, 18, 1463-1472.   DOI
6 Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comp. Phys. 1977, 23, 327-341.   DOI   ScienceOn
7 Reynolds, C.; Damerell, D.; Jones, S. Bioinformatics 2009, 25, 413-414.   DOI
8 Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235-242.   DOI
9 van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. J. Comput. Chem. 2005, 26, 1701-1718.   DOI
10 de Haseth, P. L.; Uhlenbeck, O. C. Biochemistry 1980, 19(26), 6146-6151.   DOI
11 Lee, S. H. Bull. Korean Chem. Soc. 2009, 30(9), 2158-2160.   DOI
12 Lee, S. H. Bull. Korean Chem. Soc. 2006, 27(8), 1154-1158.   DOI
13 Oh, K. J.; Klein M. L. Bull. Korean Chem. Soc. 2009, 30(9), 2087-2092.   DOI
14 Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. Comp. Phys. Comm. 1995, 91, 43-56.   DOI
15 Brennan, R. G.; Link, T. M. Curr. Opin. Microbiol. 2007, 10, 125-133.   DOI
16 Eric Sorin, J.; Vijay Pande, S. Biophys. J. 2005, 88, 2472-2493.   DOI
17 Franze de Fernandez, M. T.; Eoyang, L.; August, J. T. Nature 1968, 219, 588-590.   DOI
18 Sun, X.; Wartell, R. M. Biochemistry 2006, 45, 4875-4887.   DOI
19 Lazar, P.; Kim, S.; Lee, Y.; Son, M.; Kim, H. H.; Kim, Y. S.; Lee, K. W. J. Mol. Graph. Mod. 2009, 28, 253-260.   DOI
20 Marlow, G. E.; Perkyns, J. S.; Pettitt, B. M. Chem. Rev. 1993, 93, 2503-2521.   DOI