Browse > Article
http://dx.doi.org/10.1038/s12276-018-0179-x

Whole genome MBD-seq and RRBS analyses reveal that hypermethylation of gastrointestinal hormone receptors is associated with gastric carcinogenesis  

Kim, Hee-Jin (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kang, Tae-Wook (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Haam, Keeok (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Mirang (Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Seon-Kyu (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Seon-Young (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Lee, Sang-Il (Department of General Surgery, College of Medicine, Chungnam National University)
Song, Kyu-Sang (Department of Pathology, College of Medicine, Chungnam National University)
Jeong, Hyun-Yong (Internal Medicine, College of Medicine, Chungnam National University)
Kim, Yong Sung (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Experimental and Molecular Medicine / v.50, no.12, 2018 , pp. 1.1-1.14 More about this Journal
Abstract
DNA methylation is a regulatory mechanism in epigenetics that is frequently altered during human carcinogenesis. To detect critical methylation events associated with gastric cancer (GC), we compared three DNA methylomes from gastric mucosa (GM), intestinal metaplasia (IM), and gastric tumor (GT) cells that were microscopically dissected from an intestinal-type early gastric cancer (EGC) using methylated DNA binding domain sequencing (MBD-seq) and reduced representation bisulfite sequencing (RRBS) analysis. In this study, we focused on differentially methylated promoters (DMPs) that could be directly associated with gene expression. We detected 2,761 and 677 DMPs between the GT and GM by MBD-seq and RRBS, respectively, and for a total of 3,035 DMPs. Then, 514 (17%) of all DMPs were detected in the IM genome, which is a precancer of GC, supporting that some DMPs might represent an early event in gastric carcinogenesis. A pathway analysis of all DMPs demonstrated that 59 G protein-coupled receptor (GPCR) genes linked to the hypermethylated DMPs were significantly enriched in a neuroactive ligand-receptor interaction pathway. Furthermore, among the 59 GPCRs, six GI hormone receptor genes (NPY1R, PPYR1, PTGDR, PTGER2, PTGER3, and SSTR2) that play an inhibitory role in the secretion of gastrin or gastric acid were selected and validated as potential biomarkers for the diagnosis or prognosis of GC patients in two cohorts. These data suggest that the loss of function of gastrointestinal (GI) hormone receptors by promoter methylation may lead to gastric carcinogenesis because gastrin and gastric acid have been known to play a role in cell differentiation and carcinogenesis in the GI tract.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lindstrom, E., Chen, D., Norlen, P., Andersson, K. & Hakanson, R. Control of gastric acid secretion:the gastrin-ECL cell-parietal cell axis. Com. Biochem Physiol. A Mol. Integr. Physiol. 128, 505-514 (2001).
2 Waldum, H. L. et al. The cellular localization of the cholecystokinin 2 (gastrin) receptor in the stomach. Pharmacol. Toxicol. 91, 359-362 (2002).   DOI
3 Patel, Y. C. Somatostatin and its receptor family. Front. Neuroendocrinol. 20, 157-198 (1999).   DOI
4 Jackson, K. et al. Epigenetic silencing of somatostatin in gastric cancer. Dig. Dis. Sci. 56, 125-130 (2011).   DOI
5 Shi, X., Li, X., Chen, L. & Wang, C. Analysis of somatostatin receptors and somatostatin promoter methylation in human gastric cancer. Oncol. Lett. 6, 1794-1798 (2013).   DOI
6 Kato, S., Aihara, E., Yoshii, K. & Takeuchi, K. Dual action of prostaglandin E2 on gastric acid secretion through different EP-receptor subtypes in the rat. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G64-G69 (2005).   DOI
7 Sheikh, S. P. Neuropeptide Y and peptide YY: major modulators of gastrointestinal blood flow and function. Am. J. Physiol. 261(5 Pt 1), G701-G715 (1991).
8 Sugino, Y. et al. Epigenetic silencing of prostaglandin E receptor 2 (PTGER2) is associated with progression of neuroblastomas. Oncogene 26, 7401-7413 (2007).   DOI
9 Tian, L. et al. Clinical significance of aberrant methylation of prostaglandin E receptor 2 (PTGER2) in nonsmall cell lung cancer: association with prognosis, PTGER2 expression, and epidermal growth factor receptor mutation. Cancer 113, 1396-1403 (2008).   DOI
10 Cebola, I. et al. Epigenetics override pro-inflammatory PTGS transcriptomic signature towards selective hyperactivation of PGE2 in colorectal cancer. Clin. Epigenetics 7, 74 (2015).   DOI
11 Kim, S. M. et al. Sixty-five gene-based risk score classifier predicts overall survival in hepatocellular carcinoma. Hepatology 55, 1443-1452 (2012).   DOI
12 Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57 (2009).   DOI
13 Kim, M. et al. LRRC3B, encoding a leucine-rich repeat-containing protein, is a putative tumor suppressor gene in gastric cancer. Cancer Res. 68, 7147-7155 (2008).   DOI
14 Kim, S. K. et al. A nineteen gene-based risk score classifier predicts prognosis of colorectal cancer patients. Mol. Oncol. 8, 1653-1666 (2014).   DOI
15 Cancer Genome Atlas Research N. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202-209 (2014).   DOI
16 Irizarry, R. A. et al. The human colon cancer methylome shows similar hypoand hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178-186 (2009).   DOI
17 Lee, E. et al. Landscape of somatic retrotransposition in human cancers. Science 337, 967-971 (2012).   DOI
18 Hattori, N. & Ushijima, T. Epigenetic impact of infection on carcinogenesis: mechanisms and applications. Genome Med. 8, 10 (2016).   DOI
19 Watson, S. A., Grabowska, A. M., El-Zaatari, M. & Takhar, A. Gastrin - active participant or bystander in gastric carcinogenesis? Nat. Rev. Cancer 6, 936-946 (2006).   DOI
20 Obrink, K. J. Histamine and gastric acid secretion. A review. Scand. J. Gastroenterol. Suppl. 180, 4-8 (1991).
21 Chuang, C. N., Tanner, M., Chen, M. C., Davidson, S. & Soll, A. H. Gastrin induction of histamine release from primary cultures of canine oxyntic mucosal cells. Am. J. Physiol. 263(4 Pt 1), G460-G465 (1992).
22 Campbell, J. D. et al. The Case for a Pre-Cancer Genome Atlas (PCGA). Cancer Prev. Res (Phila.) 9, 119-124 (2016).   DOI
23 Negrini, M. et al. MINT31 methylation in gastric noninvasive neoplasia: potential role in the secondary prevention of gastric cancer. Eur. J. Cancer Prev. 21, 442-448 (2012).
24 Kermani, M. & Eliassi, A. Gastric acid secretion induced by paraventricular nucleus microinjection of orexin A is mediated through activation of neuropeptide Yergic system. Neuroscience 226, 81-88 (2012).   DOI
25 Lee, H. M. et al. Stimulatory actions of insulin-like growth factor-I and transforming growth factor-alpha on intestinal neurotensin and peptide YY. Endocrinology 140, 4065-4069 (1999).   DOI
26 Hokari, R. et al. Increased expression and cellular localization of lipocalintype prostaglandin D synthase in Helicobacter pylori-induced gastritis. J. Pathol. 219, 417-426 (2009).   DOI
27 Kalmar, A. et al. DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer. Bmc. Cancer 15, 736 (2015).   DOI
28 Takeshima, H., Wakabayashi, M., Hattori, N., Yamashita, S. & Ushijima, T. Identification of coexistence of DNA methylation and H3K27me3 specifically in cancer cells as a promising target for epigenetic therapy. Carcinogenesis 36, 192-201 (2015).   DOI
29 Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233-247e17 (2016).   DOI
30 Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11-30 (2013).   DOI
31 Sakuramoto, S. et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N. Engl. J. Med. 357, 1810-1820 (2007).   DOI
32 Sasako, M. et al. D2 lymphadenectomy alone or with para-aortic nodal dissection for gastric cancer. N. Engl. J. Med. 359, 453-462 (2008).   DOI
33 Issa, J. P. CpG island methylator phenotype in cancer. Nat. Rev. Cancer 4, 988-993 (2004).   DOI
34 Lauren, P. The Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called Intestinal-Type Carcinoma. An Attempt at a Histo-Clinical Classification. Acta Pathol. Microbiol. Scand. 64, 31-49 (1965).   DOI
35 Correa, P. Human gastric carcinogenesis: a multistep and multifactorial process--First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 52, 6735-6740 (1992).
36 Niwa, T. et al. Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res. 70, 1430-1440 (2010).   DOI
37 Burgemeister, R. New aspects of laser microdissection in research and routine. J. Histochem. Cytochem. 53, 409-412 (2005).   DOI
38 Baylin, S. B. & Ohm, J. E. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer 6, 107-116 (2006).   DOI
39 Espina, V., Heiby, M., Pierobon, M. & Liotta, L. A. Laser capture microdissection technology. Expert. Rev. Mol. Diagn. 7, 647-657 (2007).   DOI
40 Fend, F. & Raffeld, M. Laser capture microdissection in pathology. J. Clin. Pathol. 53, 666-672 (2000).   DOI
41 Laird, P. W. Cancer epigenetics. Hum. Mol. Genet. 14 Spec No1, R65-R76 (2005).   DOI
42 Agar, N. S., Halliday, G. M., Barnetson, R. S. & Jones, A. M. A novel technique for the examination of skin biopsies by laser capture microdissection. J. Cutan. Pathol. 30, 265-270 (2003).   DOI
43 Yazdi, A. S., Puchta, U., Flaig, M. J. & Sander, C. A. Laser-capture microdissection: applications in routine molecular dermatopathology. J. Cutan. Pathol. 31, 465-470 (2004).   DOI
44 Gu, H. et al. Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat. Methods 7, 133-136 (2010).   DOI
45 Harris, E. Y., Ponts, N., Levchuk, A., Roch, K. L. & Lonardi, S. BRAT: bisulfite-treated reads analysis tool. Bioinformatics 26, (572-573 (2010).   DOI
46 Clark, S. J., Harrison, J. & Frommer, M. CpNpG methylation in mammalian cells. Nat. Genet. 10, 20-27 (1995).   DOI
47 Lee, J. et al. Presence of 5-methylcytosine in CpNpG trinucleotides in the human genome. Genomics 96, 67-72 (2010).   DOI