• Title/Summary/Keyword: gear mesh stiffness

Search Result 38, Processing Time 0.021 seconds

Torsional Vibration Analysis of a Spur Gear Pair with the Variable Mesh Stiffness (기어이의 변동물림강성을 고려한 비틀림진동해석)

  • Ryu, Jae-Wan;Han, Dong-Chul;Choi, Sang-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.99-108
    • /
    • 1999
  • A four-degree-of-freedom non-linear model with time varying mesh stiffness has been developed for the dynamic analysis of spur gear trains. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover. In the model, developed several factors such as time varying mesh stiffness and damping, separation of teeth, teeth collision, various gear errors and profile modifications have been considered. Two computer programs are developed to calculate stiffness of a gear pair and transmission error and the dynamic analysis of modeled system using time integration method. Dynamic tooth and mesh forces, dynamic factors are calculated. Numerical examples have been given, which shows the time varying mesh stiffness ha a significant effect upon the dynamic tooth force and torsional vibrations.

  • PDF

Dynamic Analysis of a Gear Driving System with Time-varying Mesh Stiffness/Damping and Friction (변동물림강성/감쇠와 마찰을 고려한 기어구동계의 동특성 해석)

  • Kim, Woo-Hyung;Jung, Tae-Il;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.224-231
    • /
    • 2006
  • A six-degree-of-freedom dynamic model with time-varying mesh stiffness/damping and friction has been developed for the dynamic analysis of a gear driving system. This model includes a spur gear pair, bearing, friction and prime mover. Using Newton???s method, equations of motion for the gear driving system were derived. Two computer programs are developed to calculate mesh stiffness, transmission error and friction force and analyze the dynamics of the modeled system using a time integration method. The influences of mesh stiffness/damping, bearing, and friction affecting the system were investigated by performing eigenvalue analysis and time response analysis. It is found that the reduction of the maximum peak magnitude by friction is decided according to designing the positions of pitch point and maximum peak in the responses.

  • PDF

A Study on the Vibration Characteristics of Helical Gears with Tooth Errors (치형오차를 가진 헬리컬기어의 진동특성에 관한 연구)

  • Park, Chan-Il;Lee, Jang-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1534-1542
    • /
    • 1996
  • Gear vibration is caused by the mesh stiffness, gear accuracy, and assembling errors. For these reasons, helical gear has the azial, radial, and rotational vibrations. In this study, the mesh stiffness is calculated by considering the tooth bending, contact, and foundation deformations. Rotational vibration of helical gear with tooth error is modeled by the nonlidear equation of motion with single degree of freedom and is anlyzed numerically. Also, by a specially designed experimental set-up, the analysis are cross-checked and the vibration characteristics of helical gear are discussed.

The Prediction of the Dynamic Transmission Error for the Helical Gear System (헬리컬 기어계의 동적 전달오차의 예측)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.

The Dynamic Analysis for Compound Planetary Gear of Continuously Variable Transmission (무단 변속용 복합 유성기어의 동적 해석)

  • 신영재;윤종학
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.329-337
    • /
    • 2001
  • In this study a compound planetary gear combined with three planet gears, which is used for continuously variable transmission, is modeled that consider variable nonlinear gear mesh stiffness and damping when gear rotates, and thus equation of motion of compound planetary gear is derived. Locus of sun gear center causing noise and vibration is being determined from performing derived state equation with numerical analysis in fourth order Runge-Kutta method.

  • PDF

Effects of Bearing Characteristic on the Gear Load Distribution in the Slewing Reducer for Excavator (굴삭기용 선회감속기의 베어링 특성이 기어 하중 분포에 미치는 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.8-14
    • /
    • 2014
  • A slewing reducer consists of two planetary gearsets which require a good load distribution over the gear tooth flank for enhanced durability. This work investigates how the bearing characteristics influence the load distribution over the gear tooth flank. A complete system model is developed to analyze a slewing reducer, including the non-linear mesh stiffness of the gears and the non-linear stiffness of bearings. The results indicate that the type, arrangement and preload of the output shaft bearings greatly influence the gear mesh misalignment, contact pattern, face load factor, gear safety factor and lifetimes of the parts.

Vibration Analysis of Geared Rotor System (기어전동 회전축계의 진동해석)

  • Kim, K.D.;Kim, Y.H.;Yang, B.S.;Lee, S.J.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.60-67
    • /
    • 2000
  • As the speed of rotating machines increases and also their weight decreases, the coupling between lateral and torsional vibrations must be considered. In the past, rotordynamics and geardynamics have tended to treat the lateral and torsional vibrations of the system elements as separate and decoupled mechanisms. In the paper, the coupled lateral-torsional free and forced vibration of rotors trained by gears is analyzed using finite element method. Also the complicated variation of the meshing stiffness as a function of contact point along the line of action is estimated correctly. The gear mesh model is assumed to be linear with constant average mesh stiffness.

  • PDF

A Detailed Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-Bearing system (증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰)

  • 이안성;하진웅;최동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.722-728
    • /
    • 2001
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element this paper intends to look into in detail the coupled lateral and torsional vibration characteristics in a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled analyses natural vibration frequencies and their mode shapes upon varying the gear mesh stiffness, and also by comparing the strain energies of lateral and torsional vibration modes. Results have shown that some modes may have coupled lateral and torsional mode characteristics as the gear mesh stiffness increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, i.e., the dominant mode changes from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

  • PDF

A Study on the Vibration of 2-Stage Gear System Considering the Change of Gear Meshing Stiffness and Imbalance of Motor (기어 물림부의 스프링강성 변화와 구동기의 불균형을 고려한 2단 기어장치의 진동에 관한 연구)

  • 정태형;이정상;최정락
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.8-14
    • /
    • 2001
  • We develop a method to analyze dynamic behavior off multi-stage gear train system. The example system consists of three shafts supported by ball bearings at the ends of them and two pairs of spur gear set. For exact analysis, the meshing tooth pair of gear set is modeled as spring and damper having time-dependent meshing stiffness and damping. The bearing is modeled as spring. The result of this analysis is compared to that of other model having mean mesh stiffness. The effect of the excitation force by the unbalance off rotor off motor is also analyzed. Finally, the change ova natural frequency of the whole system due to the change of an angle between three shafts is compared in each case, and from this analysis, the avoiding angle for design is advised.

  • PDF

Vibration from a Shaft-Bearing-Plate System Due to an Axial Excitation of Helical Gears

  • Park, Chan-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2105-2114
    • /
    • 2006
  • In this paper, a simplified model is studied to predict analytically the vibration from the helical gear system due to an axial excitation of helical gears. The simplified model describes gear, shaft, bearing, and housing. In order to obtain the axial force of helical gears, the mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer matrices for the rod and bearing are used, using a spectral method with four pole parameters. The model is validated by finite element analysis. Using the model, parameter studies are carried out. As a result, the linearized dynamic shaft force due to the gear excitation in the frequency domain was proposed. Out-of-plan displacement from the forced vibrating circular plate and the renewed mode normalization constant of the circular plate were also proposed. In order to control the axial vibration of the helical gear system, the plate was more important than the shaft and the bearing. Finally, the effect of the dominant design parameters for the gear system can be investigated by this model.