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Vibration from a Shaft-Bearing-Plate System
Due to an Axial Excitation of Helical Gears

Chan IL Park
Department of Precision Mechanical Engineering, Kangnung National University,
Gangneung, Gangwon-do 210-702, Korea

In this paper, a simplified model is studied to predict analytically the vibration from the
helical gear system due to an axial excitation of helical gears. The simplified model describes
gear, shaft, bearing, and housing. In order to obtain the axial force of helical gears, the mesh
stiffness is calculated in the load deflection relation. The axial force is obtained from the solu-
tion of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation
of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft
is modeled as a rod, while the bearing is modeled as a parallel spring and damper only sup-
porting longitudinal forces. The gear housing is modeled as a clamped circular plate with
viscous damping. For the modeling of this system, transfer matrices for the rod and bearing are
used, using a spectral method with four pole parameters. The model is validated by finite
element analysis. Using the model, parameter studies are carried out. As a result, the linearized
dynamic shaft force due to the gear excitation in the frequency domain was proposed. Out-of-
plan displacement from the forced vibrating circular plate and the renewed mode normalization
constant of the circular plate were also proposed. In order to control the axial vibration of the
helical gear system, the plate was more important than the shaft and the bearing. Finally, the
effect of the dominant design parameters for the gear system can be investigated by this model.
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Nomenclature K : Stiffness
a  The radius of the circular plate k [ Wave number
C . Damping /  The length of the shaft
e . Tooth error M . Mass
E I Modulus of elasticity R, Base circle radius
F : Force t > Time
I, . Modified Bessel functions of the first kind of - Torque
order m U : Displacements
Jn | Bessel functions of the first kind of order m S : Kronecker delta
7 . Complex number ¢ . Density
J  Mass moment of inertia v . Poisson’s ratio
& . Plate thickness & ! Damping coefficient
Bs . Base helix angle
* Corresponding Author, ¢ : Rotation angle
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G ! Gear
P : Plate
S ! Shaft
Superscripts

e ! Dot, time derivative
- [ Average

1. Introduction

The helical gear system is widely used in the
power transmission mechanical system, because
of low noise characteristics of helical gear, as the
gear system comes to the high speed, the gear
noise and vibration become more important. Anal-
ysis capability to predict the noise of not only
gears itself but also the helical gear system is
required.

The vibration from the gear meshing is trans-
mitted to the gear housing through the shaft and
bearing. Housing vibration radiates noise in air.
The gear noise is caused by the structure-borne
noise. Therefore, reliable gear system modeling
for the transmission of the gear vibration is re-
quired. As a related research, Ozguven and Houser
reviewed and classified the mathematical models
used in dynamics of gear system which consisted
of gears, bearings, and shaft (Ozguven and Houser,
1998). Lim and Singh examined a generic gear-
box containing one spur gear pair using the sta-
tistical energy analysis with emphasis on the vibra-
tory energy flow through rolling element bearings
(Lim and Singh, 1991). Jacobson tried to pre-
dict the radiation efficiency using the rectangular
plate (Jacobson et al., 1996). Misun predicted the
acoustic pressure using FE analysis of gearbox
housing (Misun and Prikryl, 1995). Sabot com-
puted the noise by using the finite element mod-
eling of one rectangular face of gearbox and
Rayleigh integral (Sabot and Perret-Liaudet, 1994) .
Rautert calculated the bearing force and tried to
relate the force to the noise (Rautert, 1989). Park
tried to predict the sound pressure of shaft~plate
system as the model problem of gear system (Park
and Grosh, 1998 ; Park, 2000). As a part of the
effort to predict analytically the noise for the
helical gear system, vibration model for the gear

system is investigated. Gear system is modeled as
a shaft-bearing-plate system. Vibration of the cir-
cular plate with viscous damping is derived. In
order to complete the connection between the
bearing and the plate, the force balance equa-
tion and the displacement continuity equation are
used. The equation for the natural frequencies of
the system is derived by receptance method. The
model is validated by finite element analysis.

Using the model, transmission of force and dis-
placement due to axial excitation of helical gear is
investigated. Parameter studies of the system such
as load, plate thickness and so on are also inves-
tigated.

2. Mathematical Models

The model used in this analysis consists of the
helical gear pair, shaft, bearing, and plate as shown
in Fig. 1. Axial excitation of helical gear pair is
assumed to transmit to the shaft. Therefore, only
longitudinal excitation of shaft is considered. The
shaft is modeled as a rod and the bearing as a
parallel spring and dashpot.

Gear housing is modeled as a damped thin cir-
cular plate connected with shaft off the center of
the plate. To model the system, a set of four pole
parameters is used. Such modeling is similar in
spirit to spectral element formulation as described
in Doyle (1997). The input side of the element
vibrates sinusoidally with a displacement U; in
response to applied force F;. At the output side,

Shaft Bearing
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Fig. 1 Mathematical model
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there exists a force F; and a displacement Uj,
which result from input force and displacement.
Parameters that relate the input force and dis-
placement to the output force and displacement
are known as four-pole parameter (Snowdon,
1971). In this analysis, axial excitation of helical
gear is calculated. And the transfer matrix of an
element, which consists of four-pole parameters,
is connected in series to obtain the force trans-
mission from the shaft to the plate. Finally, Out-
of-plane displacement for the thin circular plate
with viscous damping and the mode normaliza-
tion constant are derived.

21 Gear

An axial vibration of helical gear is highly re-
lated to the rotational vibration, which is caused
by the transmission error of gears and leads to the
vibration in the rotational direction of gear sys-
tem and the important peaks of axial vibration
correspond to those of rotational one. Therefore,
this study calculates the force due to rotational
vibration and it is transformed into axial forces
by the base helix angle.

Figure 2 is the gear model of the rotational
direction used in this analysis. Rotational vibra-
tion is formulated as shown in Equation (1) and
it includes variable mesh stiffness, mesh damping
and gear errors.

My +2E6y MK %+ Ko(t, %) x (1)
:FG+F(t,X)
where
Driven
Driving gear

Fig. 2 Vibration model of the helical gear

2107
x=Rp16— Re26s, F(t,x) :JZKGfej’

— _ JiJ2
Fe=T/Ro. M= 1 g2, FiRE

This equation can be transformed into the nor-
malized linear equation with non-dimensional
variables as follows (Cai and Hayashi, 1994).

X+2bcon X+ X=a02Y (t) (2)
where
X=x/xst,xs5e=Fc/Ke, wn=vEKc/M,
. _ Fe+F(t,x)
Y(t) “_V(l‘)/xst, Y(t)_ Kc(t,X) .

The periodic forcing function Y (#) can be ex-
pressed in terms of harmonic functions with the
phase ¢ as

Y(0)=Yo+3 Vesin(iwt+4)  (3)

The steady state response with the phase ¢ is
given by

1a)?, Y:sin(Gwt+¢:— @.)
X= Yo+ = = =
V(w2 (i) )%+ Q&cwniw)?

The response in the rotational direction is trans-

mitted to the shaft by damping force and mesh
stiffness force. Multiplying the shaft force in the
rotational direction by the tangent of the base
helix angle, the shaft force is transformed into the
axial shaft force as follows.

8

1K o Yid (26 cumin) + @} sin(iot +¢i— ¢si) £s tan By

=Tt Ceonia) (5)
+K’chx5t tan Bb

F=4

2.2 Shaft

Since the shaft is modeled as a rod, the govern-
ing equation in the rectilinear coordinate x for
the rod is given by

i[ du(x, 1) } Fulx,t)
or [EAW—F, o

where EA (x) is the axial stiffness, pA (x) is the
axial density and u(x,¢) is the axial displace-
ment. Since the uniform shaft is considered, the

modulus and area are constant. Assuming that a

=pA(x) (6)
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solution is % (x, ) = U (x) &', the general solu-
tion of wave equation is obtained. Applying the
input force and displacement and the output force
and displacement to the solution, the force F3 and
the displacement (z at node 2 and the four-pole
parameters are given by

{F‘Z}:[a%lallZ]{Fl} <7>
U a/zll (1’212 Ul
where

ah=cos (k/l), as=2zwsin(k. 1),

oh=—sin(k 1) /zw, ab=cos k1),

Cr—+ E/p R kr:(U/Cr, ZZ\/E—pA

2.3 Bearing

Since the bearing is modeled as the parallel
spring and dashpot, the bearing force F3p and the
bearing displacement {35 at node 3 and the four-
pole parameters of the parallel spring and dash-
pot element are given by

(mHEEE o
where

d’flzl, a’f =0, Cl’%l:_l/(KB+jCB)y &'%2:1-

24 Clamped damped circular plate

Governing equation of circular plate in the po-
lar coordinate with viscous damping subject force
Fsp at #, and 6, is given by (Morse and Ingard,
1968)

4 871:0 Fw
DViw+Ce T +oh 3 )

:F3P8(7_70>6<49_490)/7

where D=E#l*/12(1—1%) and w(#,0,t) is the
out-of-plane displacement.

Assuming that the solution is w(»,8,t) =
W (7, 8) &’*, the spectral form for this equation
is obtained. Modal expansion to derive the forced
response of the plate is used. By solving the char-
acteristic equation of the undamped circular plate
satisfied with the clamped boudary condition, ei-
genvalues and the corresponding normal mode
are calculated. By substituting the normal mode
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equation into the spectral equation and using the
orthogonality of mode, the out-of-plane displa-
cement of the plate is obtained by

w(r,6,t)
_ & & FspHunl fun?'s) Hun Bun?) ot (10)
_mz=071=1 EﬂdzDAmn( erm_ﬁ‘i) bOS(me_MGO)e
where
Hmn (anr) =]m (erﬂ’) _‘%a'))‘lm (anV) 5

Brnn=(wrnpoh) /D, B*=(w*0h—jwCpr)/D.

If m>0, e=1, and if m=0, €=2. An, is the
mode normalization constant and lead to accurate
natural frequencies of the system. In this paper, it
is derived by Am=Jz (Bmna).

2.5 Plate forces and the natural frequencies
of the system
The rod and the bearing are connected in seriés.
Therefore, the bearing force is calculated by multi-
plying the transfer matrix for the rod and the
transfer matrix for the bearing like Eq. (11).

Fip _ diat || ehel | R _ | auar E
= L = (1)

Uss aag )| ahan |\ Ur A G2 Ui
Since the plate and the bearing is joined, the force

balance Eq. (12) and the displacement continuity
Eq. (13) at the connected point are used.

Fss=F3p (12)
Use=Usp (13)

Here F3p is the force of the plate and Usp is the
displacement of the plate at node 3 located #, and
8, on the plate. Using Eq. (10), it is expressed by

(]3},=W(7/0, (90) =F3P/KP (14)
where

& e {Hmn (an7’0> }2
1/KP - mz=0n§1 EﬂazDAmn (ﬁgmz - ,84)

From the Egs. (11) ~ (14}, the relation between
Up and Fi is given by

21~ a’u/ Kp

- a/12/KP — Q22 Fl (15)

U

Substitututing the Eq. (15) into Eq.(11), the force
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excited at the plate in Eq. (12) is given by

Fip= Q1102 — Q12001 F 16
i Q22— (1/12/ Ky ! ( )

In order to calculate the natural frequencies of
the gear system, the receptance method (Bishop
and Johnson, 1960 ; Sodel, 1993) is used. The de-
finition of the receptance method is given by

Uss _ Usr
Fos  For (17)

Substituting Egs. (11) and (14) into Eq.(17) at
the free vibration condition, the equation for nat-
ural frequencies of the system is obtained by

a1
w2 Kr ( 18)

3. Results and Discussion

For the numerical examples, the helical gear
data of Table 1 are used. Steel shaft with the dia-
meter of 20 mm and the length of 265 mm and an
aluminum alloy circular plate with a diameter of
400 mm and thickness 5 mm are used. The trans-
mitted load of the gear is 136 N. All calculation is
performed by MATLAB on personal computer.
The material of gears is steel and gears assume to
have the true involute profiles without lead errors
and lead crowning. The mesh stiffness of helical
gears is obtained by an in-house program (Park
and Lee, 1993 ; Park and Kim, 2002), which is cal-
culated by the load-deformation equation along
the contact line.

Table 1 The data of helical gears

Pinion Gear
Normal module 2.25
Normal pressure angle (deg) 17.5°
Center distance (mm) 127
Whole depth {mm) 6.6
Helix angle (deg) 28°
Number of teeth 48 50
Outside diameter (mm) 130.36 135.26
Pitch diameter (mm) 122.32 127.41
Amount of add. mod. (mm) 1.17 1.07
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To calculate the axial excitation force of the
helical gear transmitted to the shaft, the lineariz-
ed equation of motion in the rotational direction
should be solved. For the damping of the equa-
tion, the damping coefficient of 0.07 mentioned by
most gear researchers is used.

An axial stiffness of the taper roller bearing
uses the equation of the reference (Gargiulo, 1980).
Bearing stiffness varies very little between static
and dynamic conditions (Kraus et al., 1987). Thus,
it is sufficient to obtain the static stiffness of the
bearing. For the bearing stiffness, the bearing data
of SKF 30204J2 is used. The damping of bearing
is obtained by the modal testing of the experi-
mental apparatus for the bearing as shown in
Fig. 3. Under the axial force I'=136 N, impulse
hammer is excited in the axial direction. For the
modal testing, I-deas software and Agilent E8408A

Fig. 3 Experimental apparatus used to measure the

bearing parameter
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VXi mainframe are used. At the frequency of 57
Hz with an axial mode, damping ratio of 4.116%
is obtained. As a result, bearing damping of 142
N/m/sec is used for the numerical example (Zaveri,
1994).

The damping of plate is also obtained by the
modal testing of the fixed aluminum circular plate
as shown in Fig. 4. For the modal testing, impulse
hammer is excited and the same software and
front end as the bearing experiment are used. At
the first natural frequency of 250 Hz, the damping
ratio of 1.562% is obtained. From the results, the
damping of 744 N/m/sec is used for the numeri-
cal example.

Fig. 4 Experimental apparatus used to measure plate

damping
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Fig. 5 Finite element modeling

The circular plate is connected with the bearing
and shaft, which is located at the position of (75,
#,) on the plate equal to (0.1,90°). In order to
obtain the out-of-plane displacement of plate and
sound pressure, 25 modes (m=4, n=35) from 319
Hz (m=0,n=1) to 14,567 Hz (m=4,n=5) are
used.

For validation of the model, finite element
analysis is carried out. The commercial software
NASTRAN for Window is used. Shaft is model-
ed by the rod element and the bearing is modeled
by the spring element with stiffness of 6.84 X107
N/m. The circular plate is modeled by the four
node rectangular element. Fig. 5 shows the finite
element modeling. Natural frequencies in the simu-
lation is calculated by Eq. (18). Natural frequen-
cies of the finite element analysis and simulation
are compared in Table 2. As a result, the differ-
ence of natural frequency is no more than 2%. The
mode normalization constant proposed in this
paper is different to Morse and Ingard’s equation.
If their equation is used, first natural frequency
is 460 Hz, which is different from the result of
FE analysis. Therefore, out of displacement for
the circular plate and the mode normalization
constant derived is correct and validation of the
model is confirmed.

The axial shaft force calculated by the Eq. (5)
is shown in the frequency domain as Fig. 6. It is
used as the exciting force of the shaft-bearing-
plate system. The frequency indicates the exciting
one relative to the rotational speed. It shows the
subharmonic peaks by the parametric excitation
of gear. Figure 7 is the bearing force transmitted
to the plate. The force is calculated by Fsp of Eq.
(8). In this figure, the peak associated with the
axial shaft force of Fig. 4 isn’t found. Many peaks

Table 2 Natural frequency comparison between FE
anaysis and simulation

No | FE analysis | Simulation Difference
1 221 Hz 225 Hz 1.80%
2 430 Hz 439 Hz 2.09%
3 873 Hz 887 Hz 1.60%
4 1220 Hz 1216 Hz 0.32%
5 1414 Hz 1437 Hz 1.62%
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correspond to the peak of the plate and is related
with natural frequencies of the plate. Because the
bearing is joined with the plate by the bearing
stiffness, the bearing forces are greatly dependent
on the natural frequencies of the plate. In order to
predict the more exact bearing behavior, the detail
modeling of the bearing is needed.

Figure 8 shows the out-of-plane displacement
of plate calculated at the position (0.1,0.), using
these values. Figure 8 has peaks at the natural
frequencies associated with plate modes m=0,2
and 4, which the choice of the calculation point
determines the participation of modes. Therefore,
plate modes are more important than shaft modes,
and bearing modes in case of axial gear excitation.

Shatt force due te gaar vibration
130 T T 4 T T

110

<@
ji]
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o

Dynamic shaft force(N}

70 i ; i ; ; ;
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Axial shaft force
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Force(N}

i I i i i i
] 500 000 1500 2000 2800 3000 3500
Frequency

Fig. 7 Bearing force
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In gear mechanics, the deformation is not lin-
early dependent on load. Load increase leads to
the nonlinear change of mesh stiffness and bear-
ing stiffness due to the contact deformation. The
tooth error also leads to the nonlinear load-de-
formation relationship. Therefore, new mesh stiff-
ness and bearing stiffness under the high normal
transmitted load is calculated and the linearized
shaft force is calculated under the given mesh
stiffness. In order to investigate the effect of the
high transmitted gear load, the two transmitted
loads, 680 N and 1360 N, are applied and inves-
tigated in Fig. 9. As the load is increased by two
times, the out-of-plane displacement of the circu-
lar plate increases. However, the increase of the

Forced circular plate wibration

displacemsnt{mm})

] 500 kiety] 1508 2000 2800 3000 3800

Frequency{Hz}

Fig. 8 Out-of-plane displacement of the circular
plate

Farced circular plate vibration

displacement{ram)

i H i i :
0 500 1000 1500 2000 2600 3000 3500
Frequency{Hz}

Fig. 9 Out-of-plane displacement of the plate by the
load change



2112

gear load does not generate a dramatic change in
the plate vibration.

Figure 10 is to investigate the effect of the vi-
bration in case of the plate thickness 7 mm and 10
mm. While the plate of thickness 10 mm has five
peaks in the 0-3180 Hz frequency range, the plate
of 7mm has seven peaks. The plate of 10 mm is
smaller than the plate of 7 mm in the amplitude
of the out-of-plane displacement, although the
peaks move in the high frequency region. Ther-
fore, thickening the thickness makes the plate to
be stiff and less vibrant.

The effect of the plate material change is in-
vestigated in Fig. 11. Three materials of the steel,
the aluminum, and the magnesium with the mate-

Forced circular plate vibration

displacement(mm)
35

v
i 1 1 i 1 i
0 500 1000 1500 2000 2500 3000 3800
Frequency{Hz)

Out-of-plane displacement of the plate by
the plate thickness

Forced circular plate vibration

3,

-
o,

displacsment{mm)
S

1500 2000 2500 3000 3500

) 0 1000
Frequency{Hz)
Fig. 11 Out-of-plane displacement of the plate by

the plate material
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rial properties in Table 3 are compared. They
show the differences between the frequency char-
acteristics below 500 Hz and around 3 kHz. The
magnesium plate has the lowest fundamental nat-
ural frequency while the steel plate has the high
fundamental natural frequency. From 500 Hz to
below 3 kHz, three materials have similar fre-
quency characteristics. Although the magnesium
as the exchange material of the aluminum for the
weight reduction is used in the housing, the fre-
quency characteristics don’t have the great changes.

The effect of the variable nonlinear bearing
stiffness by Gargiulo’s equation and the fixed
bearing stiffness of 68.4 MN/m is investigated
in Fig. 12. Except for the high frequency region
near 3 kHz, almost the same results show up. Fig-
ure 13 shows the effect of three different bearing
stiffness. If the bearing stiffness of 6.84 MN/m is
assumed to be used, the frequency characteristics
is greatly changed at the high frequency region.
However the bearing stiffness of 68.4 MN/m and
684 MN/m don’t make a great difference. The

Table 3 Material Properties

Young’
Materials Densitsy Poissgn’s modulguss
(kg/m®) ratio (GPa)
Steel 7700 0.29 206
Aluminum 2700 0.33 71
Magnesium 1796 0.35 44.8

Forced circular plate vibration by bearing stiffness
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Fig. 12 Comparison between the varible bearing

stiffness and the constant bearing stiffness
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application of the high bearing stiffness let the
frequency characteristics move to the high fre-
quency region.

Figure 14 shows the effect of the shaft diame-
ters with the fixed bearing stiffness. Three shaft
diameters of 20 mm, 30 mm, and 40 mm are in-
vestigated. The shaft diameter of 40 mm has the
lowest fundamental natural frequency and the
low vibration in the non-resonance area while 20
mm has the highest natural frequency and the
high vibration in the non-resonance area. The big
shaft diameter increases the mass of the system
and leads to the low frequency. However, natural
fequencies of three shaft diameters don’t change
at the more than 500 Hz.

Forced circular plate vibration by bearing stifness

e KB GAMINM _:'
— — — K=68. 4N |
84NN ¥ 3
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Fig. 13 Out-of-plane displacement of the plate by
the bearing stiffness
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Fig. 14 Out-of-plane displacement of the plate by
shaft diameters
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4, Summary and Conclusion

The vibration of shaft-bearing-plate system
due to the axial excitation force of helical gears
was studied. The four pole parameters for a rod
and a spring were used to model the shaft and the
bearing. The damped circular plate employed as a
simple model of housing was used. The model
was validated by finite element analysis. The im-
portant parameters of the bearing and plate were
also measured by the specially designed experi-
mental set-up. Using the model, parameter studies
by numerical simulation were carried out. As a
result, the following results were obtained.

(1) The linearized dynamic shaft force due to
the gear excitation in the frequency domain was
proposed.

(2) Out of displacement from the forced vi-
brating circular plate and the renewed mode nor-
malization constant of the circular plate were
proposed.

(3) In order to control the axial vibration of
the helical gear system, the plate was more im-
portant than the shaft, and the bearing.

(4) The effect of the dominant design parame-
ters for the gear system can be investigated by this
model.
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