• Title/Summary/Keyword: gate voltage

Search Result 1,743, Processing Time 0.032 seconds

60 GHz Low Noise Amplifier MMIC for IEEE802.15.3c WPAN System (IEEE802.15.3c WPAN 시스템을 위한 60 GHz 저잡음증폭기 MMIC)

  • Chang, Woo-Jin;Ji, Hong-Gu;Lim, Jong-Won;Ahn, Ho-Kyun;Kim, Hae-Cheon;Oh, Seung-Hyueb
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.227-228
    • /
    • 2006
  • In this paper, we introduce the design and fabrication of 60 GHz low noise amplifier MMIC for IEEE802.15.3c WPAN system. The 60 GHz LNA was designed using ETRI's $0.12{\mu}m$ PHEMT process. The PHEMT shows a peak transconductance ($G_{m,peak}$) of 500 mS/mm, a threshold voltage of -1.2 V, and a drain saturation current of 49 mA for 2 fingers and $100{\mu}m$ total gate width (2f100) at $V_{ds}$=2 V. The RF characteristics of the PHEMT show a cutoff frequency, $f_T$, of 97 GHz, and a maximum oscillation frequency, $f_{max}$, of 166 GHz. The performances of the fabricated 60 GHz LNA MMIC are operating frequency of $60.5{\sim}62.0\;GHz$, small signal gain ($S_{21}$) of $17.4{\sim}18.1\;dB$, gain flatness of 0.7 dB, an input reflection coefficient ($S_{11}$) of $-14{\sim}-3\;dB$, output reflection coefficient ($S_{22}$) of $-11{\sim}-5\;dB$ and noise figure (NF) of 4.5 dB at 60.75 GHz. The chip size of the amplifier MMIC was $3.8{\times}1.4\;mm^2$.

  • PDF

V-Band Power Amplifier MMIC with Excellent Gain-Flatness (광대역의 우수한 이득평탄도를 갖는 V-밴드 전력증폭기 MMIC)

  • Chang, Woo-Jin;Ji, Hong-Gu;Lim, Jong-Won;Ahn, Ho-Kyun;Kim, Hae-Cheon;Oh, Seung-Hyueb
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.623-624
    • /
    • 2006
  • In this paper, we introduce the design and fabrication of V-band power amplifier MMIC with excellent gain-flatness for IEEE 802.15.3c WPAN system. The V-band power amplifier was designed using ETRI' $0.12{\mu}m$ PHEMT process. The PHEMT shows a peak transconductance ($G_{m,peak}$) of 500 mS/mm, a threshold voltage of -1.2 V, and a drain saturation current of 49 mA for 2 fingers and $100{\mu}m$ total gate width (2f100) at $V_{ds}$=2 V. The RF characteristics of the PHEMT show a cutoff frequency, $f_T$, of 97 GHz, and a maximum oscillation frequency, $f_{max}$, of 166 GHz. The gains of the each stages of the amplifier were modified to have broadband characteristics of input/output matching for first and fourth stages and get more gains of edge regions of operating frequency range for second and third stages in order to make the gain-flatness of the amplifier excellently for wide band. The performances of the fabricated 60 GHz power amplifier MMIC are operating frequency of $56.25{\sim}62.25\;GHz$, bandwidth of 6 GHz, small signal gain ($S_{21}$) of $16.5{\sim}17.2\;dB$, gain flatness of 0.7 dB, an input reflection coefficient ($S_{11}$) of $-16{\sim}-9\;dB$, output reflection coefficient ($S_{22}$) of $-16{\sim}-4\;dB$ and output power ($P_{out}$) of 13 dBm. The chip size of the amplifier MMIC was $3.7{\times}1.4mm^2$.

  • PDF

Design of Temperature Compensation Circuit for Satisfying the Intermodulation Specification of Power Amplifier (전력증폭기의 혼변조 규격 만족을 위한 온도보상회로 설계)

  • Park, Won-Woo;Kim, Byung-Chul;Cho, Kyung-Rae;Lee, Jae-Buom
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2609-2614
    • /
    • 2010
  • Temperature compensation circuit is implemented by using the temperature sensor, and Intermodulation (IM) Specification of Power Amplifier is satisfied in the temperature range of $-30^{\circ}C{\sim}60^{\circ}C$ with this temperature compensation circuit. The output voltage of temperature compensation circuit which vary 170mV with the temperature is applied to the gate of TR in 3W output power Amplifier. As the result, right 3rd IM component is -18.5~-26dBm, left 3rd IM component is -18.5~-35dBm, and the left and right 5th IM component is -24~-26dBm in the temperature range of $-30^{\circ}C{\sim}60^{\circ}C$. It is confirmed that IM specification of power amplifier which is under -17dBm in the whole temperature range is satisfied.

Electrical Characteristics of Charge Trap Flash Memory with a Composition Modulated (ZrO2)x(Al2O3)1-x Film

  • Tang, Zhenjie;Zhang, Jing;Jiang, Yunhong;Wang, Guixia;Li, Rong;Zhu, Xinhua
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.130-134
    • /
    • 2015
  • This research proposes the use of a composition modulated (ZrO2)x(Al2O3)1-x film as a charge trapping layer for charge trap flash memory; this is possible when the Zr (Al) atomic percent is controlled to form a variable bandgap as identified by the valence band offsets and electron energy loss spectrum measurements. Compared to memory devices with uniform compositional (ZrO2)0.1(Al2O3)0.9 or a (ZrO2)0.92(Al2O3)0.08 trapping layer, the memory device using the composition modulated (ZrO2)x(Al2O3)1-x as the charge trapping layer exhibits a larger memory window (6.0 V) at the gate sweeping voltage of ±8 V, improved data retention, and significantly faster program/erase speed. Improvements of the memory characteristics are attributed to the special energy band alignments resulting from non-uniform distribution of elemental composition. These results indicate that the composition modulated (ZrO2)x(Al2O3)1-x film is a promising candidate for future nonvolatile memory device applications.

Chopper Application for Magnetic Stimulation

  • Choi, Sun-Seob;Lee, Sun-Min;Kim, Jun-Hyoung;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.213-220
    • /
    • 2010
  • Since the hypothalamus immediately reacts to a nerve by processing all the information from the human body and the external stimulus being conducted, it performs a significant role in internal secretion; thus, a diverse and rapid stimulus pulse is required. By detecting Zero Detector accurately via the application of AVR on-Chip (ATMEL) using commercial electricity, chopping generates a stimulus pulse to the brain using an IGBT gate to designate a new magnetic stimulation following treatment and diagnosis. To simplify and generate a diverse range of stimuli for the brain, chopping can be used as a free magnetic stimulator. Then, commercial frequency (60Hz) is chopped precisely at the first level of the leakage transformer to deliver an appropriate stimulus pulse towards the hypothalamus when necessary. Discharge becomes stable, and the chopping frequency and duty-ratio provide variety after authorizing a high-pressure chopping voltage at the second level of the magnetic stimulator. These methods have several aims. The first is to apply a variable stimulus pulse via accurate switching frequency control by a voltaic pulse or a pulse repetition rate, according to the diagnostic purpose for a given hypothalamus. Consequently, the efficiency tends to increase. This experiment was conducted at a maximum of 210 W, a magnetic induced amplitude of 0.1~2.5 Tesla, a pulse duration of $200{\sim}350\;{\mu}s$, magnetic inducement of 5 Hz, stimulus frequency of 0.1~60 Hz, and a duration of stimulus train of 1~10 sec.

Design Optimization of a One-Stage Low Noise Amplifier below 20 GHz in 65 nm CMOS Technology (65 nm CMOS 기술을 적용한 20 GHz 이하의 1 단 저잡음 증폭기 설계)

  • Shen, Ye-Hao;Lee, Jae-Hong;Shin, Hyung-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.6
    • /
    • pp.48-51
    • /
    • 2009
  • One-stage low noise amplifier (LNA) using 65 nm RF CMOS technology below 20 GHz is designed to find the optimal bias voltage and optimal width of input transistor so that the maximum figure of merit (FoM) has been achieved. If the frequency is higher than 13 GHz, the amplifier needs two-stage to achieve the higher gain. If the frequency is lower than 5 GHz, one additional capacitor between gate and source should be added to control the power under the limitation. This paper summarizes one-stage LNA overall performances below 20 GHz and this approach can also be applied to other CMOS technology of LNA designs.

A Capacitorless Low-Dropout Regulator With Enhanced Response Time (응답 시간을 향상 시킨 외부 커패시터가 없는 Low-Dropout 레귤레이터 회로)

  • Yeo, Jae-Jin;Roh, Jeong-Jin
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.506-513
    • /
    • 2015
  • In this paper, an output-capacitorless, low-dropout (LDO) regulator is designed, which consumes $4.5{\mu}A$ quiescent current. Proposed LDO regulator is realized using two amplifier for good load regulation and fast response time, which provide high gain, high bandwidth, and high slew rate. In addition, a one-shot current boosting circuit is added for current control to charge and discharge the parasitic capacitance at the pass transistor gate. As a result, response time is improved during load-current transition. The designed circuit is implemented through a $0.11-{\mu}m$ CMOS process. We experimentally verify output voltage fluctuation of 260mV and recovery time of $0.8{\mu}s$ at maximum load current 200mA.

Time Dependence of Charge Generation and Breakdown of Re-oxidized Nitrided Oxide (재산화 질화 산화막의 전하 생성과 항복에 대한 시간 의존성)

  • 이정석;이용재
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.3
    • /
    • pp.431-437
    • /
    • 1998
  • In this paper, we have investigated the electrical properties of ultra-thin nitrided oxide(NO) and re-oxidized nitrided oxide(ONO) films that are considered to be promising candidates for replacing conventional silicon dioxide film in ULSI level integration. Especially, we have studied a variation of I-V characteristics, gate voltage shift, and time-dependent dielectric breakdown(TDDB) of thin layer NO and ONO film depending on nitridation and reoxidation time, respectively, and measured a variation of leakage current and charge-to-breakdown(Q$\_bd$) of optimized NO and ONO film depending on ambient temperature, and then compared with the properties of conventional SIO$\_2$. From the results, we find that these NO and ONO thin films are strongly influenced by process time and the optimized ONO film shows superior dielectric characteristics, and (Q$\_bd$) performance over the NO film and SIO$\_2$, while maintaining a similar electric field dependence compared with NO layer.

  • PDF

A Study on Fabrication and Characteristics of Nonvolatile SNOSFET EEPROM with Channel Sizes (채널크기에 따른 비휘방성 SNOSFET EEPROM의 제작과 특성에 관한 연구)

  • 강창수;이형옥;이상배;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.91-96
    • /
    • 1992
  • The nonvolatile SNOSFET EEPROM memory devices with the channel width and iength of 15[$\mu\textrm{m}$]${\times}$15[$\mu\textrm{m}$], 15[$\mu\textrm{m}$]${\times}$1.5[$\mu\textrm{m}$] and 1.9[$\mu\textrm{m}$]${\times}$1.7[$\mu\textrm{m}$] were fabricated by using the actual CMOS 1 [Mbit] process technology. The charateristics of I$\_$D/-V$\_$D/, I$\_$D/-V$\_$G/ were investigated and compared with the channel width and length. From the result of measuring the I$\_$D/-V$\_$D/ charges into the nitride layer by applying the gate voltage, these devices ere found to have a low conductance state with little drain current and a high conductance state with much drain current. It was shown that the devices of 15[$\mu\textrm{m}$]${\times}$15[$\mu\textrm{m}$] represented the long channel characteristics and the devices of 15[$\mu\textrm{m}$]${\times}$1.5[$\mu\textrm{m}$] and 1.9[$\mu\textrm{m}$]${\times}$1.7[$\mu\textrm{m}$] represented the short channel characteristics. In the characteristics of I$\_$D/-V$\_$D/, the critical threshold voltages of the devices were V$\_$w/ = +34[V] at t$\_$w/ = 50[sec] in the low conductance state, and the memory window sizes wee 6.3[V], 7.4[V] and 3.4[V] at the channel width and length of 15[$\mu\textrm{m}$]${\times}$15[$\mu\textrm{m}$], 15[$\mu\textrm{m}$]${\times}$1.5[$\mu\textrm{m}$], 1.9[$\mu\textrm{m}$]${\times}$1.7[$\mu\textrm{m}$], respectively. The positive logic conductive characteristics are suitable to the logic circuit designing.

  • PDF

Fabrication and Characteristics of a-Si : H TFT for Image Sensor (영상센서를 위한 비정질 실리콘 박막트랜지스터의 제작 및 특성)

  • Kim, Young-Jin;Park, Wug-Dong;Kim, Ki-Wan;Choi, Kyu-Man
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.95-99
    • /
    • 1993
  • a-Si : H TFTs for image sensor have been fabricated and their operational characteristics have been investigated. Hydrogenated amorphous silicon nitride(a-SiN : H) films were used for the gate insulator and $n^{+}$-a-Si : H films were depostied for the source and drain contact. The thicknesses of a-SiN : H and a-Si : H films were $2000{\AA}$, respectively and the thickness of $n^{+}$-a-Si : H film was $500{\AA}$. Also the channel length and channel width of a-Si : H TFTs were $50{\mu}m$ and $1000{\mu}m$, respectively. The ON/OFF current ratio, threshold voltage, and field effect mobility of fabricated a-Si : H TFTs were $10^{5}$, 6.3 V, and $0.15cm^{2}/V{\cdot}s$, respectively.

  • PDF