Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.3.130

Electrical Characteristics of Charge Trap Flash Memory with a Composition Modulated (ZrO2)x(Al2O3)1-x Film  

Tang, Zhenjie (College of Physics and Electronic Engineering, Anyang Normal University)
Zhang, Jing (College of Physics and Electronic Engineering, Anyang Normal University)
Jiang, Yunhong (College of Physics and Electronic Engineering, Anyang Normal University)
Wang, Guixia (College of Physics and Electronic Engineering, Anyang Normal University)
Li, Rong (School of Mathematics and Statistics, Anyang Normal University)
Zhu, Xinhua (National Laboratory of Solid State Microstructures, Nanjing University)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.3, 2015 , pp. 130-134 More about this Journal
Abstract
This research proposes the use of a composition modulated (ZrO2)x(Al2O3)1-x film as a charge trapping layer for charge trap flash memory; this is possible when the Zr (Al) atomic percent is controlled to form a variable bandgap as identified by the valence band offsets and electron energy loss spectrum measurements. Compared to memory devices with uniform compositional (ZrO2)0.1(Al2O3)0.9 or a (ZrO2)0.92(Al2O3)0.08 trapping layer, the memory device using the composition modulated (ZrO2)x(Al2O3)1-x as the charge trapping layer exhibits a larger memory window (6.0 V) at the gate sweeping voltage of ±8 V, improved data retention, and significantly faster program/erase speed. Improvements of the memory characteristics are attributed to the special energy band alignments resulting from non-uniform distribution of elemental composition. These results indicate that the composition modulated (ZrO2)x(Al2O3)1-x film is a promising candidate for future nonvolatile memory device applications.
Keywords
Composition modulated; Atomic layer deposition; Charge trap; Memory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. D. Huang, R. P. Shi, and P. T. Lai, Appl. Phys. Lett., 104, 162905 (2014).   DOI   ScienceOn
2 Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo, and B. J. Cho, IEEE Trans. Electron Devices, 53, 654 (2006).   DOI   ScienceOn
3 D. Tahir, E. Lee, S. K. Oh, T. T. Tham, H. J. Kang, H. Jin, S.Heo, J. C. Park, J. G. Chung, and J. C. Lee, Appl. Phys. Lett., 94, 212902 (2009).   DOI   ScienceOn
4 S. A. Chambers, Y. Liang, Z. Yu, R. Droopad, J. Ramdani, and K. Eisenbeiser, Appl. Phys. Lett., 77, 1662 (2000).   DOI   ScienceOn
5 Y. Yang and M. H. White, Solid-State Electron., 44, 949 (2000).   DOI   ScienceOn
6 Y. Wang and M. H. White, Solid-State Electronics, 49, 97 (2005).   DOI   ScienceOn
7 S. Y. Cha, H. J. Kim, and D. J. Choi, J. Mater. Sci., 45, 5223 (2010).   DOI   ScienceOn
8 J. X. Chen, J. P. Xu, L. Liu, and P. T. Lai, Applied Physics Express, 6, 084202 (2013).   DOI
9 R. J. Tseng, J. X. Huang, J. Ouyang, R. B. Kaner, and Y. Yang, Nano Lett., 5, 1077 (2005).   DOI   ScienceOn
10 S. H. Lee, Y. Jung, and R. Agarwal, Nat. Nanotechnol., 2, 626 (2007).   DOI   ScienceOn
11 M. N.Kozicki, C. Gopalan, M. Balakrishnan, and M. Mitkova, IEEE Trans. Nanotechnol., 5, 535 (2006).   DOI   ScienceOn
12 K. H. Lee, H. C. Lin, and T. Y. Huang, Electron Device Letters, 34, 393 (2013).   DOI   ScienceOn
13 G. H. Park and W. J. Cho, Appl. Phys. Lett., 96, 043503 (2010).   DOI   ScienceOn
14 S. H. Hong, M. C. Kim, P. S. Jeong, S. H. Choi, Y. S. Kim, and K. J. Kim, Appl. Phys. Lett.., 92, 093124 (2008).   DOI   ScienceOn
15 Z. Tan, S. K. Samanta, W. J. Yoo, and S. J. Lee, Appl. Phys. Lett., 86, 013107 (2005).   DOI   ScienceOn
16 J. J. Ren, D. Yan, S. Chu, and J. L. Liu, Appl. Phys. A, 111, 719 (2013).   DOI   ScienceOn
17 X. D. Huang, P. T. Lai, and J. K. O. Sin, Appl. Phys. A, 108, 229 (2012).   DOI
18 Z. J. Tang, X. H. Zhu, H. N. Xu, Y. D. Xia, J. Yin, Z. G. Liu, A. D. Li, and F. Yan, Materials Lett., 92, 21 (2013).   DOI   ScienceOn
19 C. X. Zhu, Z. L. Huo, Z. G. Xu, M. H. Zhang, Q. Wang, J. Liu, S. B. Long, and M. Liu, Appl. Phys. Lett., 97, 253503 (2010).   DOI
20 G. Zhang, X. P. Wang, W. J. Yoo, and M. F. Li, IEEE Trans. Electron Devices, 54, 3317 (2007).   DOI   ScienceOn
21 M. Burkhardt, A. Jedaa, M. Novak, A. Ebel, K. Voitchovsky, F. Stellacci, A. Hirsch, and M. Halik, Adv. Mater., 22, 2525 (2010).   DOI   ScienceOn
22 X. D. Huang, J. K. O. Sin, and P. T. Lai, IEEE Electron Device Lett., 34, 499 (2013).   DOI   ScienceOn
23 L. Liu, J. P. Xu, J. X. Chen, and P. T. Lai, Appl. Phys. A, 115, 1317 (2014).   DOI   ScienceOn
24 Z. J.Tang, X. H. Zhu, H. N. Xu, Y. D. Xia, J. Yin, A. D. Li, F. Yan, and Z. G. Liu, Appl. Phys. A, 108, 217 (2011).   DOI
25 S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe', and K.Chan, Appl. Phys. Lett., 68, 1376 (1996).   DOI