• Title/Summary/Keyword: gate dielectric

Search Result 454, Processing Time 0.03 seconds

Fabrication of top gate Graphene Transistor with Atomic Layer Deposited $Al_2O_3$

  • Kalode, Pranav;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.212-212
    • /
    • 2013
  • We fabricate and characterize top gate Graphene transistor using aluminum oxide as a gate insulator by atomic layer deposition (ALD). It is found that due to absence of functional group and dangling bonds, ALD of metal oxide is difficult on Graphene. Here we used 4-mercaptopheneol as a functionalization layer on Graphene to facilitate uniform oxide coverage. Contact angle measurement and Atomic force microscopy were used to confirm uniform oxide coverage on Graphene. Raman spectroscopy revealed that functionalization with 4-mercaptopheneol does not induce any defect peak on Graphene. Our device shows mobility values of 4,000 $cm^2/Vs$ at room temperature which also suggest top gate stack does not significantly increase scattering. The noncovalent functionalization method is non-destructive and can be used to grow ultra-thin dielectric for future Graphene applications.

  • PDF

Electrical and Chemical Properties of ultra thin RT-MOCVD Deposited Ti-doped $Ta_2O_5$

  • Lee, S. J.;H. F. Luan;A. Mao;T. S. Jeon;Lee, C. h.;Y. Senzaki;D. Roberts;D. L. Kwong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.202-208
    • /
    • 2001
  • In Recent results suggested that doping $Ta_2O_5$ with a small amount of $TiO_2$ using standard ceramic processing techniques can increase the dielectric constant of $Ta_2O_5$ significantly. In this paper, this concept is studied using RTCVD (Rapid Thermal Chemical Vapor Deposition). Ti-doped $Ta_2O_5$ films are deposited using $TaC_{12}H_{30}O_5N$, $C_8H_{24}N_4Ti$, and $O_2$ on both Si and $NH_3$-nitrided Si substrates. An $NH_3$-based interface layer at the Si surface is used to prevent interfacial oxidation during the CVD process and post deposition annealing is performed in $H_2/O_2$ ambient to improve film quality and reduce leakage current. A sputtered TiN layer is used as a diffusion barrier between the Al gate electrode and the $TaTi_xO_y$ dielectric. XPS analyses confirm the formation of a ($Ta_2O_5)_{1-x}(TiO_2)_x$ composite oxide. A high quality $TaTi_xO_y$ gate stack with EOT (Equivalent Oxide Thickness) of $7{\AA}$ and leakage current $Jg=O.5A/textrm{cm}^2$ @ Vg=-1.0V has been achieved. We have also succeeded in forming a $TaTi_x/O_y$ composite oxide by rapid thermal oxidation of the as-deposited CVD TaTi films. The electrical properties and Jg-EOT characteristics of these composite oxides are remarkably similar to that of RTCVD $Ta_2O_5, suggesting that the dielectric constant of $Ta_2O_5$ is not affected by the addition of $TiO_2$.

  • PDF

Molecular Aligning Properties of a Dielectric Layer of Polymer-Ceramic Nanocomposite for Organic Thin-Film Transistors

  • Kim, Chi-Hwan;Kim, Sung-Jin;Yu, Chang-Jae;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1200-1203
    • /
    • 2004
  • We investigated the molecular aligning capability of a polymer layer containing ceramic nanoparticles which can be used as a gate insulator of organic thin-film transistors (OTFTs). Because of the enhanced dielectric properties arising from the nanoparticles and molecular aligning properties of the polymer, the composite layer provides excellent mobility characteristics of the OTFTs.

  • PDF

Carrier Trap Characteristics varying with insulator thickness of MIS device (MIS소자의 절연막 두께 변화에 따른 캐리어 트랩 특성)

  • 정양희
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.800-803
    • /
    • 2002
  • The MONOS capacitor are fabricated to investigate the carrier trapping due to Fowler-Nordheim tunneling injection. The carrier trapping in scaled multi-dielectric(ONO) depends on the nitride and Op oxide thickness under Fowler_Nordheim tunneling injection. Carriers captured at nitride film could not escape from nitride to gate, but be captured at top oxide and nitride interface traps because of barrier height of top oxide. Therefore, it is expected that the MONOS memory devices using multi dielectric films enhance memory effect and have a long memory retention characteristic.

  • PDF

Device Degradation with Gate Lengths and Gate Widths in InGaZnO Thin Film Transistors (게이트 길이와 게이트 폭에 따른 InGaZnO 박막 트랜지스터의 소자 특성 저하)

  • Lee, Jae-Ki;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1266-1272
    • /
    • 2012
  • An InGaZnO thin film transistor with different gate lengths and widths have been fabricated and their device degradations with device sizes have been also performed after negative gate bias stress. The threshold voltage and subthreshold swing have been decreased with decrease of gate length. However, the threshold voltages were increased with the decrease of gate lengths. The transfer curves were negatively shifted after negative gate stress and the threshold voltage was decreased. However, the subthreshold swing was not changed after negative gate stress. This is due to the hole trapping in the gate dielectric materials. The decreases of the threshold voltage variation with the decrease of gate length and the increase of gate width were believed due to the less hole injection into gate dielectrics after a negative gate stress.

Performance Enhancement of 3-way Doherty Power Amplifier using Gate and Drain bias control (Gate 및 Drain 바이어스 제어를 이용한 3-way Doherty 전력증폭기와 성능개선)

  • Lee, Kwang-Ho;Lee, Suk-Hui;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.77-83
    • /
    • 2011
  • In this thesis, 50W Doherty amplifier was designed and implemented for Beyond 3G's repeater and base-station. Auxiliary amplifier of doherty amplifier was implemented by Gate bias control circuit. Though gate bias control circuit solved auxiliary's bias problem, output characteristics of doherty amplifier was limited. To enhance the output characteristic relativize Drain control circuit And To improve power efficiency make 3-way Doherty power amplifier. therefore, 3-way GDCD (Gate and Drain bias Control Doherty) power amplifier is embodied to drain bias circuit for General Doherty power amplifier. The 3-way GDCD power amplifier composed of matching circuit with chip capacitor and micro strip line using FR4 dielectric substance of specific inductive capacity(${\varepsilon}r$) 4.6, dielectric substance height(H) 30 Mills, and 2.68 Mills(2 oz) of copper plate thickness(T). Experiment result satisfied specification of amplifier with gains are 57.03 dB in 2.11 ~ 2.17 GHz, 3GPP frequency band, PEP output is 50.30 dBm, W-CDMA average power is 47.01 dBm, and ACLR characteristics at 5MHz offset frequency band station is -40.45 dBc. Especially, 3-way DCHD power amplifier showed excellence efficiency performance improvement in same ACLR than general doherty power amplifier.

중성빔 식각과 중성빔 원자층 식각기술을 이용한 TiN/HfO2 layer gate stack structure의 저 손상 식각공정 개발

  • Yeon, Je-Gwan;Im, Ung-Seon;Park, Jae-Beom;Kim, Lee-Yeon;Gang, Se-Gu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.406-406
    • /
    • 2010
  • 일반적으로, 나노스케일의 MOS 소자에서는 게이트 절연체 두께가 감소함에 따라 tunneling effect의 증가로 인해 PID (plasma induced damage)로 인한 소자 특성 저하 현상을 감소하는 추세로 알려져 있다. 하지만 요즘 많이 사용되고 있는 high-k 게이트 절연체의 경우에는 오히려 더 많은 charge들이 trapping 되면서 PID가 오히려 더 심각해지는 현상이 나타나고 있다. 이러한 high-k 게이트 식각 시 현재는 주로 Hf-based wet etch나 dry etch가 사용되고 있지만 gate edge 영역에서 high-k 게이트 절연체의 undercut 현상이나 PID에 의한 소자특성 저하가 보고되고 있다. 본 연구에서는 이에 차세대 MOS 소자의 gate stack 구조중 issue화 되고 있는 metal gate 층과 gate dielectric 층의 식각공정에 각각 중성빔 식각과 중성빔 원자층 식각을 적용하여 전기적 손상 없이 원자레벨의 정확한 식각 조절을 해줄 수 있는 새로운 two step 식각 공정에 대한 연구를 진행하였다. 먼저 TiN metal gate 층의 식각을 위해 HBr과 $Cl_2$ 혼합가스를 사용한 중성빔 식각기술을 적용하여 100 eV 이하의 에너지 조건에서 하부층인 $HfO_2$와 거의 무한대의 식각 선택비를 얻었다. 하지만 100 eV 조건에서는 낮은 에너지에 의한 빔 스케터링으로 실제 패턴 식각시 etch foot이 발생되는 현상이 관찰되었으며, 이를 해결하기 위하여 먼저 높은 에너지로 식각을 진행하고 $HfO_2$와의 계면 근처에서 100 eV로 식각을 해주는 two step 방법을 사용하였다. 그 결과 anistropic 하고 하부층에 etch stop된 식각 형상을 관찰할 수 있었다. 다음으로 3.5nm의 매우 얇은 $HfO_2$ gate dielectric 층의 정확한 식각 깊이 조절을 위해 $BCl_3$와 Ar 가스를 이용한 중성빔 원자층 식각기술을 적용하여 $1.2\;{\AA}$/cycle의 단일막 식각 조건을 확립하고 약 30 cycle 공정시 3.5nm 두께의 $HfO_2$ 층이 완벽히 제거됨을 관찰할 수 있었다. 뿐만 아니라, vertical 한 식각 형상 및 향상된 표면 roughness를 transmission electron microscope(TEM)과 atomic force microscope (AFM)으로 관찰할 수 있었다. 이러한 중성빔 식각과 중성빔 원자층 식각기술이 결합된 새로운 gate recess 공정을 실제 MOSFET 소자에 적용하여 기존 식각 방법으로 제작된 소자 결과를 비교해 본 결과 gate leakage current가 약 one order 정도 개선되었음을 확인할 수 있었다.

  • PDF

Size-Reduction of Frequency Mixers Using Artificial Dielectric Substrate (임의유전체 기판을 이용한 주파수 혼합기의 소형화)

  • Kwon, Kyunghoon;Lim, Jongsik;Jeong, Yongchae;Ahn, Dal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.657-662
    • /
    • 2013
  • A size-reduced high frequency mixer designed by adopting artificial dielectric substrate is described in this work. The artificial dielectric substrate is composed by stacking the lower substrate in which a lot of metalized via-holes exist, and upper substrate on which microstrip lines are realized. The effective dielectric constant increases due to the inserted lots of via-holes, and this may be applied to size-reduction of high frequency circuits. In this work, in order to present an application example of size-reduction for active high frequency circuits using the artificial dielectric substrate, a 8GHz single gate mixer is miniaturized and measured. It is described that the basic circuit elements for mixers such as hybrid, low pass filter, and matching networks can be replaced by the artificial dielectric substrate for size-reduction. The final mixer has 55% of size compared to the normal one. The measured average conversion gain is around 3dB which is almost similar result as the normal circuit.

Preparation and Characterization of Plasma Polymerized Methyl Methacrylate Thin Films as Gate Dielectric for Organic Thin Film Transistor

  • Ao, Wei;Lim, Jae-Sung;Shin, Paik-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.836-841
    • /
    • 2011
  • Plasma polymerized methyl methacrylate (ppMMA) thin films were deposited by plasma polymerization technique with different plasma powers and subsequently thermally treated at temperatures of 60 to $150^{\circ}C$. To find a better ppMMA preparation technique for application to organic thin film transistor (OTFT) as dielectric layer, the chemical composition, surface morphology, and electrical properties of ppMMA were investigated. The effect of ppMMA thin-film preparation conditions on the resulting thin film properties were discussed, specifically O-H site content in the pMMA, dielectric constant, leakage current density, and hysteresis.

Low-operating voltage Pentacene FETs with High dielectric constant polymeric gate dielectrics and its hyteresis behavior

  • Park, Chan-Eon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.168-168
    • /
    • 2006
  • Low-operating voltage organic field-effect transistors (OFETs) have been realized with high dielectric constant (${\kappa}$) polymer such as cyanoethylated poly vinyl alcohol (CR-V, ${\kappa}=12$). Since the $high-{\kappa}$polymers are likely to contain water and ionic impurities, large hysteresis and considerable leakage current are frequently observed in OFETs. To solve these problems, we cross-linked the CR-V by using a cross-linking agent. Cross-linked CR-V dielectrics showed high dielectric constant of 11.1 and good insulating properties, resulting in a high capacitance ($81nF/cm^{2}$ at 1MHz) at 120 nm of dielectric thickness. Pentacene FETs with cross-linked CR-V dielectrics exhibited high carrier mobility ($0.72\;cm^{2}/Vs$), small subthreshold swing (185 mV/dec) and little hysteresis at low-operating voltage (${\Leq}-3V$).

  • PDF