• Title/Summary/Keyword: gas film

Search Result 2,507, Processing Time 0.031 seconds

Temperature Dependence of Bonding Structure of GZO Thin Film Analyzed by X-ray Diffractometer (XRD의 결정구조로 살펴본 GZO 박막의 온도의존성)

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.52-55
    • /
    • 2016
  • GZO film was prepared on p-type Si wafer and then annealed at various temperatures in an air conditions to research the bonding structures in accordance with the annealing processes. GZO film annealed in an atmosphere showed the various bonding structure depending on annealing temperatures and oxygen gas flow rate during the deposition. The difference of bonding structures of GZO films made by oxygen gas flows between 18 sccm and 22 sccm was so great. The bonding structures of GZO films made by oxygen gas flow of 18 sccm were showed the crystal structure, but that of 22 sccm were showed the amorphous structure in spite of after annealing processes. The bonding structure of GZO as oxide-semiconductor was observed the trend of becoming amorphous structures at the temperature of $200^{\circ}C$. Therefore, the characteristics of oxide semiconductor are needed to research the variation near the annealing at $200^{\circ}C$.

A Study on the Electrical Properties of Pt Thin film RTD for Temperature Sensor (온도센서용 Pt박막 측온저항체의 전기적 특성에 관한 연구)

  • 문중선;정광진;최성호;조동율;천희곤
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.3-9
    • /
    • 1999
  • Pt thin film of about 7000$\AA$ thickness was deposited on the alumina substrate using DC Magnetron Sputter and the characteristics of the film for temperature sensor were investigated. When film of about 7000$\AA$ thickness was deposited at working gas pressure of $2.0{\times}10^{-3}$torr, sputtering power of 50W, substrate temperature of $350^{\circ}C$(Ts), sheet resistance(Rs), resistivity($\rho$) and temperature coefficient of resistivity(TCR) of the film were respectively 0.39$\Omega$/$\square$, 27.60$\mu\Omega$-cm and $3350 ppm/^{\circ}C$. When the film was annealed at $1000^{\circ}C$ for 240min in hydrogen ambient, Rs, $\rho$ and TCR were respectively 0.236$\Omega$/$\square$, 15.18$\mu\Omega$-cm and 3716 ppm/$3716 ppm/^{\circ}C$. When working gas of 15sccm oxygen and 100sccm Argon were used, Rs, $\rho$ and TCR were respectively 0.335$\Omega$/$\square$, 22.45$\mu\Omega$-cm and $3427 ppm/^{\circ}C$. When the film was annealed at $1000^{\circ}C$ for 240min, Rs, $\rho$and TCR were respectively 0.224/$\Omega$$\square$, 14$\mu\Omega$-cm and $3760 ppm/^{\circ}C$ and the characteristics of the film were much improved.

  • PDF

Effects of Packaging Treatment on Quality of Fresh-cut Mushrooms (Agaricus bisporus Sing.) during Storage (신선편이가공 양송이의 포장방법에 따른 품질변화)

  • Lim Jeong-Ho;Choi Jeong-Hee;Hong Seok-In;Jeong Moon-Cheol;Kim Dong-Man
    • Food Science and Preservation
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The effects of packaging material and method on quality of fresh-cut mushrooms (Agaricus bisporus Sing.) were investigated in terms of weight loss, surface color, phenolics, vitamin C and sensory characteristics during storage at $5^{\circ}C$. The fresh-cut mushrooms were subjected to passive, gas exchange and vacuum packaging conditions at st. Polyethylene film (PE), polypropylene film (PP), anti-fogging film (AP) and pen orated film (PF) were used for the passive packaging. The mixed gas of $5\% CO_2/\;2\%O_2$ (MA1) and $10\%CO_2/\;2\%O_2$(MA2) were applied for the gas exchange packaging. The respiration rate of sliced mushroom was 1.27 times higher than intact mushroom at $5^{\circ}C$. Gas concentrations in the passive packaging were $1-2\%\;O^2\;and\;5-16\%m$ during storage of sliced mushrooms for 14 days at $5^{\circ}C$, and levels of the gases were different by the films used The mushroom in perforated film (PF) showed the highest weight loss of $4.56\%$. Anti-fogging film (AF) was somewhat effective for prevention of the weight loss compared with other films after 14 days storage. The mushrooms in MA1 and MA2 packages showed lower delta L value than in other films. PE packaging mitigated decrease of free and bound phenolics during storage. The mushrooms in MA2 kept better quality in sensory aspect, and then in MA1, PE and PP in order during storage at $5^{\circ}C$.

Variation of Gas Selectivity by Silane binders in SWNT Gas sesnsors (SWNT 가스센서에서 실란 바인더에 의한 가스 선택성의 변화)

  • Lee, Ho-Jung;Kim, Seong-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.19-19
    • /
    • 2010
  • We suggest CNT-based gas sensors for breath alcohol measurement. The sensors were composed of single-walled carbon nanotubes (SWNTs) thin film on glass substrate with simple process, and the SWNTs thin film as sensing layer was formed by multiple spray-coating with SWNT composites which was well-dispersed, highly controlled and differently functionalized by various binders (TEOS, MTMS, and VTMS) added in ethanol solvent. In this work, three different SWNTs thin films were made to compare their electrical response properties for alcohol vapor. From fabricated sensors, conductance responses were measured and discussed. In the result, our alcohol gas sensors showed an effective selectivity even at room temperature.

  • PDF

Vibration Response Analysis of a Small Gas Turbine Rotor (소형 가스터빈 회전체의 진동응답 해석)

  • Kim, Young-Cheol;Ha, Jin-Woong;Myung, Ji-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.3
    • /
    • pp.18-23
    • /
    • 2010
  • This paper predicts the unbalance and transient (start-up) response of a 5MW industrial gas turbine by using commercial rotordynamic tool, DYNAMICS 4.3. The gas turbine is operated at 12,975rpm on squeeze film dampers or tilting pad bearings. The stiffness and damping coefficients of the squeeze film dampers and tilting pad bearings are estimated. It is seen that the vibration amplitude of the gas turbine rotor is sufficiently small around the critical speeds and at the rated speed.

Fabrication of low power NO micro gas senor by using CMOS compatible process (CMOS공정 기반의 저전력 NO 마이크로가스센서의 제작)

  • Shin, Han-Jae;Song, Kap-Duk;Lee, Hong-Jin;Hong, Young-Ho;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • Low power bridge type micro gas sensors were fabricated by micro machining technology with TMAH (Tetra Methyl Ammonium Hydroxide) solution. The sensing devices with different heater materials such as metal and poly-silicon were obtained using CMOS (Complementary Metal Oxide Semiconductor) compatible process. The tellurium films as a sensing layer were deposited on the micro machined substrate using shadow silicon mask. The low power micro gas sensors showed high sensitivity to NO with high speed. The pure tellurium film used micro gas sensor showed good sensitivity than transition metal (Pt, Ti) used tellurium film.

NUMERICAL ANALYSIS OF GAS FLOWS IN ULTRA-THIN FILM GAS BEARINGS USING A MODEL BOLTZMANN EQUATION (모델볼츠만 방정식을 이용한 초박막 개스베어링 기체유장 수치해석)

  • Chung, C.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.86-95
    • /
    • 2009
  • A kinetic theory analysis is used to study the ultra-thin gas flow field in gas bearings. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. Calculations are made for flows inside micro-channels of backward-facing step, forward-facing step, and slider bearings. The results are compared well with those from the DSMC method. The present method does not suffer from statistical noise which is common in particle based methods and requires less computational effort.

OPTICAL EMISSION SPECTROSCOPY OF Ch$_4$/Ar/H$_2$ GAS DISCHARGES IN RF PLASMA CVD OF HYDROGENATED AMORPHOUS CARBON FILMS

  • Lee, Sung-Soo;Osamu Takai
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.648-653
    • /
    • 1996
  • Hydrogenated amorphous carbon(a-C:H) films are prepared by rf plasma CVD in a $CH_4$ source gas system diluted with Ar of $H_2$. The spectra of emissive and reactive species in the plasma are detected using in stiu optical emission spectroscopy. Inaddition, the relationship between the film properties which can be varied by the deposition parameters and the Raman spectra is studied. In the $CH_4/H_2$ gas system, the emission intensities of CH and $H \tau$ decrease and those of $H \alpha$, $H \beta$, $C_2$ and Ar increase with increasing $H_2$ concentration, The formation of $C_2$ and CH in the $CH_4/Ar/H_2$ gas system is greatly suppressed by hydrogen addition and the excess of hydrogen addition is found to form graphite structure. The $C_2$ formation in the gas phase enhances a-C:H film formation.

  • PDF

HCD Ion Plating of Ti(C, N) Films for Cutting Tools (절삭공구용 Ti(C, N)피막의 HCD식 이온도금시 공정변수의 영향)

  • 강형호;고경현;안재환
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.3
    • /
    • pp.143-148
    • /
    • 1994
  • Effects of process variables of HCD ion plating on the film composition of Ti(C, N) were analyzed. The mole ratio of carbon to nitrogen and that of non-metal to titanium in the film primarily depend on the partial pressure ratio of ($C-2H_2$/ $N_2$) and total reactive gas pressure, respectively. The amount of nonmetallic com-ponents increases in nonlinear fashion as the total gas pressure due to the different reactivity of $C-2H_2$ and $N_2$ gases with Ti. The nonmetallic components was saturated dwith nitrogen when the nitrogen gas was more than 60% of total reactive gas. These two process variables could be related systematically using the concept of effective pressure in which the difference of reactivity of each gas was normalized.

  • PDF

CO gas sensing characteristics of ZnO and ZnO-CuO thick films prepared by acquous precipitation (액상침전법으로 제조된 ZnO와 ZnO-CuO후막의 일산화탄소 감응특성)

  • 전석택;최우성;백승철
    • Electrical & Electronic Materials
    • /
    • v.9 no.9
    • /
    • pp.925-932
    • /
    • 1996
  • Using the d.c. 2-probe method, we have examined the temperature dependence of CO gas sensitivity of pure ZnO and ZnO CuO thick films prepared by the acqueous precipitation. At 200ppm CO gas, pure ZnO thick film shows the maximum sensitivity of -6.5 at 300.deg. C. On the other hand, the maximum sensitivity of 1-5 mol% and 10-15 mol% CuO added ZnO thick films are 2.8-2.5 and 1.6, respectively. Therefore, the sensitivity of pure ZnO thick film is about three times larger than those of ZnO-CuO thick films. We suggest that the promotion of maximum sensitivity is caused by low packing and the increase of chemical adsorptions for $O_{2}$ gas.

  • PDF