• Title/Summary/Keyword: galanthamine

Search Result 12, Processing Time 0.028 seconds

The Isolation of Acetylcholinesterase Inhibitory Constituents from Lycoris radiata using On-line HPLC-biochemical Detection System

  • Yang, Hee-Jung;Yoon, Kee-Dong;Chin, Young-Won;Kim, Young-Choong;Kim, Jin-Woong
    • Natural Product Sciences
    • /
    • v.16 no.4
    • /
    • pp.228-232
    • /
    • 2010
  • Bioactivity-guided fractionation using on-line HPLC biochemical detection system on $CHCl_3$-soluble fraction of Lycoris radiata led to the isolation of deoxylycorenine (1), O-demethylhomolycorine (2), galanthamine (3), lycoramine (4), mixture of $6{\alpha}$-and $6{\beta}$-haemanthidine (5), and lycorine (6), identified by spectroscopic data and physicochemical property. Among the isolated compounds, 1, 3 and 6 showed acetylcholinesterase inhibitiory activities with $IC_{50}$ values of 18.0, 12.0 and $16.6\;{\mu}M$, respectively, in in vitro colorimetric microplate assay.

Various physiological effects from fruiting body extracts of Phellinus baumii (장수진흙버섯 자실체 추출물의 다양한 생리활성 효과)

  • Yoon, Ki Nam;Lee, Tae Soo
    • Journal of Mushroom
    • /
    • v.18 no.3
    • /
    • pp.260-267
    • /
    • 2020
  • Phellinus baumii, a white-rot fungus, has been used for centuries as folk medicine in China, Japan, and Korea. This study aimed to evaluate the in vitro anti-diabetic, and anti-cholinesterase, and in vivo anti-inflammatory effects of the fruiting bodies of P. baumii. The methanol (ME) and hot water (HE) extracts (2.0 mg/mL) of P. baumii fruiting bodies suppressed α-amylase activity, exactly 61.33%, and 65.00%, respectively; of note, acarbose, the positive control, inhibited 93.33% of the α-amylase activity. Moreover, the ME and HE (2.0 mg/mL) inhibited 89.67% and 91.00%, respectively, of the activity of α-glucosidase activity, whereas the same concentration of acarbose suppressed 84.67% of the α-glucosidase activity. The ME and HE (1.0 mg/mL) also inhibited 96.05% and 94.58%, respectively, of the acetylcholinesterase (AChE) activity; galanthamine, the positive control, led to an inhibition of 81.12%. The butyrylcholinesterase (BChE) activity was also inhibited by ME and HE (1.0 mg/mL; 91.05% and 82.27%, respectively); of note, the same concentration of galanthamine suppressed 81.12% of the BChE activity. The production of NO in LPS-induced RAW 264.7 macrophages was significantly suppressed by both ME and HE treatments. Importantly, the carrageenan-activated rat hind-paw edema was significantly reduced 2-6 h after ME administration (50 mg/mL). Taken together, the results suggest that the fruiting bodies of P. baumii have α-amylase, α-glucosidase, α-cholinesterase, and anti-inflammatory activities, and, therefore, may be good natural sources for the promotion of human health.

Alkaloids from Amaryllidaceae III -Alkaloids from the Bulbs of Pancratium maritimum-

  • Sener, Bilge;Konukol, Sakine;Kruk, Cornelis;Pandit, Upendra K.
    • Natural Product Sciences
    • /
    • v.4 no.3
    • /
    • pp.148-152
    • /
    • 1998
  • The extract from the bulbs of Pancratium maritimum L. afforded 12 alkaloids belonging to the skeletally six different groups of the Amaryllidaceae alkaloids. In this paper, the isolation and identification of (-)-N-demethyl-galanthamine (1), (+)-tazettine (2) and (-)-2-O-demethylmontanine (3) are described. Their structures have been determined by using extensive spectroscopic techniques. This is the first report describing the occurrence of 1 and 3 in this plant.

  • PDF

Anti-Xanthine Oxidase, Anti-Cholinesterase, and Anti-Inflammatory Activities of Fruiting Bodies of Phellinus gilvus (마른진흙버섯 자실체의 Xanthine Oxidase, Cholinesterase 및 염증 저해 효과)

  • Yoon, Ki Nam;Jang, Hyung Seok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.3
    • /
    • pp.225-235
    • /
    • 2018
  • Phellinus gilvus is a medicinal mushroom used that has been used in folk medicine in Asian countries for centuries. The aim of this study was to investigate the anti-xanthine oxidase, anti-cholinesterase, and anti-inflammatory activities of methanol (ME) and hot water (HW) extracts prepared from fruiting bodies of Ph. gilvus. ME and HW had good anti-xanthine oxidase (XO) activities compared to allopurinol, an inhibitor of xanthine oxidase. ME showed comparable and slightly lower inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively, than galanthamine, a standard AChE and BChE inhibitor. ME also showed a protective effect against glutamate-induced cytotoxicity at 40 mg/mL and 100 mg/mL in PC-12 cells. ME (0.5~2.0 mg/mL) significantly inhibited nitric oxide (NO) production in RAW 264.7 murine macrophage cells stimulated with lipopolysaccharide (LPS). Carrageenan-induced hind-paw edema in rats was significantly reduced 2~6 hr after treatment with 50 mg/kg of ME, which was comparable to administration of 5 mg/kg of indomethacin, the positive control. These results demonstrate that ME and HW of Ph. gilvus fruiting bodies possess good anti-xanthine oxidase, anti-cholinesterase, and anti-inflammatory activities.

Antioxidant, anti-cholinesterase, and inflammation inhibitory activities of fruiting bodies of Phallus impudicus var. impudicus L. (말뚝버섯 자실체의 항산화, 항콜린에스테라제 및 염증 저해 활성)

  • Yoon, Ki Nam;Lee, Tae Soo
    • Journal of Mushroom
    • /
    • v.17 no.3
    • /
    • pp.152-161
    • /
    • 2019
  • Phallus impudicus var. impudicus L. is an edible mushroom that has long been used as folk medicine in China. The aim of this study was to evaluate the antioxidant, anti-cholinesterase, and inflammation inhibitory activities of a methanol extract of fruiting bodies of P. impudicus var. impudicus L. The extract exhibited good 1,1-diphenyl-2-picrylhydrazyl scavenging activity, excellent ferrous ion chelating activity, and moderate hydroxyl radical scavenging activity compared with BHT at 2.0 mg/ml. However, the reducing power of the extract was significantly lower than that the BHT positive control. Although the inhibitory activities of methanol extract on acetylcholinesterase and butyryl cholinesterase were significantly lower than the galanthamine positive control at the concentration tested, the inhibition of acetylcholinesterase and butyryl cholinesterase was 52.83% and 55.17%, respectively, at 1.0 mg/ml. The methanol extract also demonstrated excellent inhibition of inflammation-related activities, such as production of nitric oxide in lipopolysaccharide-induced RAW 264.7 macrophage cells and acute edema induced by administration of carrageenan on the hind paw of rats. The collective results suggest that the fruiting body of P. impudicus var. impudicus L. might be a good source of antioxidant, anti-cholinesterase, and anti-inflammation compounds.

Effects of Chrysanthemum indicum Linne Flowers on Acetylcholinesterase Activity and Learning Performance in Mice

  • Kim, Sun-Young;Chung, Cha-Kwon;Bae, Young-Soo;Yi, Jae-Seon;Kang, Il-Jun
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.384-388
    • /
    • 2008
  • Alzheimer's disease (AD) is the most common neurodegenerative disorder and is responsible for more than 50% of all dementia cases. There is significant interest in finding new sources of compounds that inhibit acetylcholinesterase (AChE) to be used in the treatment of AD, since only a few AChE inhibitors, such as galanthamine, physostigmine, and tacrine, are available for clinical use. In the present study, ICR mice were treated with a 1 mg/kg scopolamine, which caused impaired cognitive ability. The steady consumption of a water extract of Chrysanthemum indicum Linne flowers for 3 months significantly prevented the scopolamine induced deficit of the spatial cognitive capability of mice. It also improved long-term memory in mice with amnesia induced by scopolamine, as assessed by the Morris water maze and passive avoidance tests. In addition, water extract consumption significantly decreased AChE activity in mouse brain, leading to inhibition of acetylcholine hydrolysis.

In vitro antioxidant, anti-hyperglycemic, anti-cholinesterase, and inhibition of nitric oxide production activities of methanol and hot water extracts of Russula rosacea mushroom

  • Yoon, Ki Nam;Lee, Tae Soo
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Russula rosacea, a mycorrhizal fungus, has been used for edible and medicinal purposes. This study was conducted to evaluate the in vitro antioxidant, anti-hyperglycemic, anti-cholinesterase, and nitric oxide inhibitory effects of the fruiting bodies from R. rosacea extracted with methanol, and hot water. The 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activities of the methanol and hot water extracts (2.0 mg/ml) of R. rosacea were comparable with BHT, the positive control. The chelating effects of the mushroom and hot water extracts were significantly higher than that of BHT. The reducing power of methanol and hot water extract (6 mg/ml) were significantly lower than that of BHT. Seven phenolic compounds were detected from acetonitrile and hydrochloric acid solvent extract of the mushroom. alpha-amylase and alpha-glucosidase inhibitory activities of methanol and hot water extracts were lower than that of acarbose, the positive control. The acetylcholinesterase and butyrylcholinesterase inhibitory effects were moderate compared with galanthamine, the standard drug. Nitric oxide (NO) production in lipopolysaccharide (LPS) induced RAW 264.7 cells were inhibited significantly by the mushroom extracts in a concentration dependent manner. Therefore, we demonstrated that fruiting bodies of R. rosacea possess in vitro antioxidant, anti-hyperglycemic, anti-cholinesterase, and NO production inhibitory activities. The experimental results suggest that the fruiting bodies of R. rosacea are good natural antioxidant, anti-hyperglycemic, anti-cholinesterase, and anti-inflammatory sources.

Antioxidant, anti-acetylcholinesterase and xanthine oxidase inhibitory activities of three extracts from Phellinus igniarius

  • Jin, Ga-Heon;Lee, Min Woong;Im, Kyung Hoan;Lee, Tae Soo
    • Journal of Mushroom
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This study was initiated to investigate antioxidant, anti-acetylcholinesterase, and xanthine oxidase inhibitory activities and properties of fruiting bodies, mycelia, and fermentation culture filtrates from Phellinus igniarius. The contents of total phenols and flavonoid of fruit bodies, mycelia, and culture filtrate were 15.35-1.36 mg/g, 10.35-7.85 mg/g, and 8.25-5.36 mg/g. The 1,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging abilities of the extracts from the fruiting bodies, mycelia, and culture filtrates were 90.25-95.60%, 78.82-85.24%, and 76.32-82.50% at $50-400{\mu}g/mL$, respectively. The chelating ability of fruiting body extract on ferrous ions was higher than those of mycelia and culture filtrates tested. The anti-acetylcholinesterase inhibitory activity of the fruiting body extract at 400 ${mu}g/mg$ exhibited 91.10% on AChE, which is lower than that of positive control, galanthamine (94.82%). The xanthine oxidase inhibitory activities of the fruiting bodies, mycelia, and culture extract were 85.47%, 78.13%, and 72.49% at 400 ${\mu}g/mL$, respectively. Overall, the fruiting body extract has better anti-acetylcholinesterase, antioxidant and xanthine oxidase inhibitory activities than those from mycelia and culture filtrate.

Isolation of Acetylcholinesterase Inhibitors from the Flowers of Chrysanthemum indicum Linne

  • Lim, Soon-Sung;Han, Sag-Myung;Kim, Sun-Young;Bae, Young-Soo;Kang, Il-Jun
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.265-269
    • /
    • 2007
  • There is significant interest in finding new sources of acetylcholinesterase (AChE) inhibitors for use in treating Alzheimer's disease, since only a few AChE inhibitors are available for clinical use, such as galanthamine, physostigmine, and tacrine. The ethanol extract of Chrysanthemum indicum Linne flowers was analyzed and found to markedly decrease AChE activity. Acaciin and $acacetin-7-O-{\beta}-D-galactopyranoside$ were identified as the active compounds responsible for the AChE inhibition by using an activity-guided fractionation strategy. The relationship between structure and activity for five flavonoids (acaciin, $acacetin-7-O-{\beta}-D-galactopyranoside$, luteolin, and two other commercially available flavonoids, i.e., apigenin and acacetin) was also investigated, revealing that the presence of methoxy groups at C-4' in the B ring and a sugar at O-7 in ring A appear to be essential for the inhibition of AChE.

The neuroprotective effects of Nokyongdaebo-tang(Lurongdabutang) treatment in pathological Alzheimer's disease model of neural tissues (Alzheimer's Disease 병태모델에서 녹용대보탕(鹿茸大補湯)의 신경세포 보호효과)

  • Cheong, Myong-Hee;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.20 no.2
    • /
    • pp.1-17
    • /
    • 2009
  • Objectives : Alzheimer's disease(AD) is the most common form of dementia, which is characterized by progressive deterioration of memory and higher cortical functions that ultimately results in total degradation of intellectual and mental activities. Nokyongdaebo-tang(Lurongdabutang) has been usually used for the treatment for the deficiency syndrome dementia and amnesia. This experiment was designed to investigate the effect of the Nokyongdaebo-tang(Lurongdabutang) hot water extract on pathological AD model. Methods : The effects of the Nokyongdaebo-tang(Lurongdabutang) hot water extract on cultured spinal cord cells induced by ${\beta}$-amyloid were investigated. The effects of the Nokyongdaebo-tan(Lurongdabutang) hot water extract on the memory deficit mice induced by scopolamine were investigated. Results : 1. ${\beta}$-amyloid treatment on cultured spinal cord cells increased both GFAP-staining intensity of astrocytes and caspase 3 immunoreactivity on cultured cells. Then, Nokyongdaebo-tang(Lurongdabutang) treatment reduced the labeling intensity for both GFAP and caspase 3 proteins in culture cells. 2. Scopolamine treatment into mice increased levels of GFAP-positive astrocytes and caspase 3-labeled cells of the hippocampal subfields dentate hilar region, CA3 and CA1 area. In vivo administration of Nokyongdaebo-tang(Lurongdabutang) attenuated labeling intensity for those two proteins in the same hippocampal areas. Similar effects were observed by the treatment of galanthamine, an inhibitor of acetylcholinesterase. Conclusions : This experiment shows that the Nokyongdaebo-tang(Lurongdabutang) may play a protective role in damaged neural tissues. Since neuronal damage seen in degenerative brains such as AD are largely unknown, the current data may provide possible insight into therapeutic strategies for AD treatments. Nokyongdaebo-tang(Lurongdabutang) might be effective for the prevention and treatment of AD.

  • PDF