The Isolation of Acetylcholinesterase Inhibitory Constituents from Lycoris radiata using On-line HPLC-biochemical Detection System

  • Yang, Hee-Jung (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Yoon, Kee-Dong (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Chin, Young-Won (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Kim, Young-Choong (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Kim, Jin-Woong (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University)
  • Received : 2010.09.06
  • Accepted : 2010.11.26
  • Published : 2010.12.31

Abstract

Bioactivity-guided fractionation using on-line HPLC biochemical detection system on $CHCl_3$-soluble fraction of Lycoris radiata led to the isolation of deoxylycorenine (1), O-demethylhomolycorine (2), galanthamine (3), lycoramine (4), mixture of $6{\alpha}$-and $6{\beta}$-haemanthidine (5), and lycorine (6), identified by spectroscopic data and physicochemical property. Among the isolated compounds, 1, 3 and 6 showed acetylcholinesterase inhibitiory activities with $IC_{50}$ values of 18.0, 12.0 and $16.6\;{\mu}M$, respectively, in in vitro colorimetric microplate assay.

Keywords

References

  1. Blennow, K., de Leon, M. J., Zetterberg, H., Alzheimer's disease. Lancet 368, 387-403 (2006). https://doi.org/10.1016/S0140-6736(06)69113-7
  2. Bores, G. M., Huger, F. P., Petko, W., Mutlib, A. E., Camacho, F., Rush, D. K., Selk, D. E., Wolf, V., Kosley, R. W., Jr., Davis, L., Vargas, H. M., Pharmacological evaluation of novel Alzheimer's disease therapeutics: acetylcholinesterase inhibitors related to galanthamine. J Pharmacol Exp Ther 277, 728-738 (1996).
  3. Codina, C., Bastida, J., Viladomat, F., Fernandez, J. M., Bergonon, S., Rubiralta, M., Quirion, J. C., Alkaloids from Narcissus-Munozii- Garmendiae. Phytochemistry 32, 1354-1356 (1993). https://doi.org/10.1016/S0031-9422(00)95122-7
  4. Ingkaninan, K., de Best, C. M., van der Heijden, R., Hofte, A. J., Karabatak, B., Irth, H., Tjaden, U. R., van der Greef, J., Verpoorte, R., High-performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. J Chromatogr A 872, 61-73 (2000). https://doi.org/10.1016/S0021-9673(99)01292-3
  5. Jegorov, A., Buchta, M., Sedmera, P., Kuzma, M., Havlicek, V., Accurate product ion mass spectra of galanthamine derivatives. J Mass Spectrom 41, 544-548 (2006). https://doi.org/10.1002/jms.1015
  6. Kiely, J. S., Moos, W. H., Pavia, M. R., Schwarz, R. D., Woodard, G. L., A silica gel plate-based qualitative assay for acetylcholinesterase activity: a mass method to screen for potential inhibitors. Anal Biochem 196, 439-442 (1991). https://doi.org/10.1016/0003-2697(91)90491-B
  7. Kihara, M., K., K., L., X., Kobayashi, S., Alkaloidal Constituents of the Flowers of Lycoris radiata Herb. (Amaryllidaceae). Chem. Pharm. Bull. 39, 1849-1853 (1991). https://doi.org/10.1248/cpb.39.1849
  8. Kobayashi, S., Yuasa, K., Imakura, Y., Kihara, M., Shingu, T., Isolation of O-Demethyllycoramine from Bulbs of Lycoris radiata HERB. Chem. Pharm. Bull. 28, 3433-3436 (1980). https://doi.org/10.1248/cpb.28.3433
  9. Krall, W. J., Sramek, J. J., Cutler, N. R., Cholinesterase inhibitors: a therapeutic strategy for Alzheimer disease. Ann Pharmacother 33, 441-450 (1999). https://doi.org/10.1345/aph.18211
  10. Li, S. Y., Chen, C., Zhang, H. Q., Guo, H. Y., Wang, H., Wang, L., Zhang, X., Hua, S. N., Yu, J., Xiao, P. G., Li, R. S., Tan, X., Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 67, 18-23 (2005). https://doi.org/10.1016/j.antiviral.2005.02.007
  11. Likhitwitayawuid, K., Angerhofer, C. K., Chai, H. B., Pezzuto, J. M., Cordell, G. A., Traditional Medicinal-Plants of Thailand .22. Cytotoxic and Antimalarial Alkaloids from the Bulbs of Crinum-Amabile. J Nat Prod 56, 1331-1338 (1993). https://doi.org/10.1021/np50098a017
  12. Miyasaka, K., Hiramatsu, Y., Takezaki, T., Pharmacological studies of lycorenine, an alkaloid of Lycoris radiata Herb.: Vasodepressor mechanism in rats. Jpn J Pharmacol 29, 605-622 (1979). https://doi.org/10.1254/jjp.29.605
  13. Pabuccuoglu, V., Richomme, P., Gozler, T., Kivcak, B., Freyer, A. J., Shamma, M., Four New Crinine-Type Alkaloids from Sternbergia Species. J Nat Prod 52, 785-791 (1989). https://doi.org/10.1021/np50064a020
  14. Park, J. H., Sung, S. H., Haeksim-Yakyongsikmul. Sin-Il Books: Seoul pp 2-3 (2007).
  15. Son, M., Kim, A., Lee, J., Park, C. H., Heo, J. C., Lee, H. J., Lee, S. H., Ethanol extract of Lycoris radiata induces cell death in B16F10 melanoma via p38-mediated AP-1 activation. Oncol Rep 24, 473-478 (2010).
  16. Terry, A. V., Jr., Buccafusco, J. J., The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306, 821-827 (2003). https://doi.org/10.1124/jpet.102.041616