DOI QR코드

DOI QR Code

Anti-Xanthine Oxidase, Anti-Cholinesterase, and Anti-Inflammatory Activities of Fruiting Bodies of Phellinus gilvus

마른진흙버섯 자실체의 Xanthine Oxidase, Cholinesterase 및 염증 저해 효과

  • Yoon, Ki Nam (Department of Clinical Laboratory Science, Ansan University) ;
  • Jang, Hyung Seok (Department of Clinical Laboratory Science, Ansan University)
  • 윤기남 (안산대학교 임상병리과) ;
  • 장형석 (안산대학교 임상병리과)
  • Received : 2018.05.19
  • Accepted : 2018.08.16
  • Published : 2018.09.30

Abstract

Phellinus gilvus is a medicinal mushroom used that has been used in folk medicine in Asian countries for centuries. The aim of this study was to investigate the anti-xanthine oxidase, anti-cholinesterase, and anti-inflammatory activities of methanol (ME) and hot water (HW) extracts prepared from fruiting bodies of Ph. gilvus. ME and HW had good anti-xanthine oxidase (XO) activities compared to allopurinol, an inhibitor of xanthine oxidase. ME showed comparable and slightly lower inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively, than galanthamine, a standard AChE and BChE inhibitor. ME also showed a protective effect against glutamate-induced cytotoxicity at 40 mg/mL and 100 mg/mL in PC-12 cells. ME (0.5~2.0 mg/mL) significantly inhibited nitric oxide (NO) production in RAW 264.7 murine macrophage cells stimulated with lipopolysaccharide (LPS). Carrageenan-induced hind-paw edema in rats was significantly reduced 2~6 hr after treatment with 50 mg/kg of ME, which was comparable to administration of 5 mg/kg of indomethacin, the positive control. These results demonstrate that ME and HW of Ph. gilvus fruiting bodies possess good anti-xanthine oxidase, anti-cholinesterase, and anti-inflammatory activities.

본 연구에서는 마른진흙버섯 자실체를 메탄올과 열수를 이용해 추출한 물질의 anti-xanthine oxidase, anti-cholinesterase 및 염증 저해 효과에 대한 연구를 수행하였다. 마른진흙버섯 자실체의 메탄올 추출물과 열수 추출물의 xanthine oxidase에 대한 저해효과는 양성대조군으로 사용한 allopurinol과 대등하게 높은 효과를 나타냈다. Acetylcholinesterase에 대한 메탄올 추출물의 1.0~2.0 mg/mL 농도에서의 저해활성은 양성대조군인 galanthamine과 유사하게 높았지만 butyrylcholinesterase에 대한 메탄올과 열수 추출물의 저해활성은 양성대조군에 비해 실험에 사용한 모든 농도범위에서 유의하게 낮았다. PC-12 세포에 glutamate의 처리에 의해 유도된 독성은 40 mg/mL와 100 mg/mL 농도의 메탄올 추출물과 100 mg/mL 농도의 열수추출물의 처리에 의해 크게 완화되어 PC-12 세포의 생존율이 유의하게 증가하는 것이 관찰되었다. 마른진흙버섯의 메탄올과 열수 추출물의 염증 저해 실험에서 RAW 264.7 대식세포에 메탄올 추출물을 2.0 mg/mL 농도로 처리하고 염증을 매개하는 LPS를 추가로 투여한 후 RAW 264.7 세포에 생성되는 NO를 측정한 결과, 양성대조군에 비해 3.37배 높은 저해효과를 나타냈고, 처리한 자실체 메탄올 추출물의 농도가 증가함에 따라 생성된 NO의 양이 현저하게 감소하는 경향을 나타내었다. 또한 기염제인 carrageenan에 의해 흰쥐 뒷발에 유도된 부종 저해 실험에서는 투여한 버섯 추출물의 농도가 증가함에 따라 흰쥐의 뒷발에 유도된 부종의 용적이 농도 의존적으로 감소하는 경향을 나타냈다. 따라서 마른진흙버섯 자실체에 함유된 물질은 acetylcholinesterase과 butyrylcholinesterase 등의 cholinesterase에 대한 저해작용과 glutamate에 의해 유도된 PC-12세포의 독성을 완화하고 또한 염증을 저해하는 효과를 나타내 기억력이 감퇴되는 초기 알츠하이머병과 염증을 완화하는 천연소염제로의 이용이 가능할 것으로 사료된다.

Keywords

References

  1. Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999;66:137-147. https://doi.org/10.1136/jnnp.66.2.137
  2. Beal F. Aging, energy and oxidative stress in neurodegenerative diseases. Ann Neurol. 1995;38:357-366. https://doi.org/10.1002/ana.410380304
  3. Coyle JT, Price DL, DeLong MR. Alzheimer's disease: a disorder of cholinergeric innervation. Science. 1983;219:1184-1190. https://doi.org/10.1126/science.6338589
  4. Talesa VN. Acetylcholinesterase in Alzheimer's disease. Mech Aging Dev. 2001;122:1961-1969. https://doi.org/10.1016/S0047-6374(01)00309-8
  5. Block F, Pergande G, Schwarz M. Flupirtine reduces functional deficits and neuronal damage after global ischemia in rats. Brain Res. 1997;754:279-284. https://doi.org/10.1016/S0006-8993(97)00096-6
  6. Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013;11:315-335. https://doi.org/10.2174/1570159X11311030006
  7. Xie QW, Whisnant R, Nathan C. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon $\gamma$ and bacterial lipopolysaccharide. J Exper Medi. 1993;177:1779-1784. https://doi.org/10.1084/jem.177.6.1779
  8. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008:454:428-435. https://doi.org/10.1038/nature07201
  9. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323-350. https://doi.org/10.1146/annurev.immunol.15.1.323
  10. Hippeli S, Elstner EF. Inhibition of biochemical model reactions for inflammatory processes by plant extracts: a review on recent developments. Free Radi Res. 1999;31(Suppl):S81-S87. https://doi.org/10.1080/10715769900301361
  11. Boumpas DT, Chrousos GP, Wilder RL, Cupps TR, Balow JE. Glucocorticoid therapy of immune-mediated diseases:basic and clinical correlates. Ann Intern Med. 1993;119:1198-1208. https://doi.org/10.7326/0003-4819-119-12-199312150-00007
  12. Wasser SP, Weis AL. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol. 1999;19:65-96.
  13. Lindequist U, Niedermeyer THJ, Julich WD. The pharmacological potential of mushrooms. eCAM. 2005;2:285-299.
  14. Yoon KN, Jang HS, Jin GH. Antioxidant, anti-diabetic, anti-cholinesterase, and nitric oxide inhibitory activities of fruiting bodies of Agaricus brasiliensis. Korean J Clin Lab Sci. 2015; 47:194-202. https://doi.org/10.15324/kjcls.2015.47.4.194
  15. Park WH, Lee HD. Illustrated book of Korean medicinal mushrooms. 2nd ed. Seoul: Kyohak Publishing; 2003. p359-360.
  16. Bae JS, Jang KH, Yim H, Jin HK. Polysaccharide isolated from Phellinus gilvus inhibit melanoma growth in mouse. Caner Lett. 2005;218:43-52. https://doi.org/10.1016/j.canlet.2004.08.002
  17. Yoon KN, Jang HS. Antioxidant and antimicrobial activities of fruiting bodies of Phellinus gilvus collected in Korea. Korean J Clin Lab Sci. 2016;48:355-364. https://doi.org/10.15324/kjcls.2016.48.4.355
  18. Shim SM, Im KH, Kim JW, Shim MJ, Lee MW, Lee TS. Studies on immuno-modulatory and antitumor effects of crude polysaccharides extracted from Paecilomyces sinclairii. Korean J Mycol. 2003;31:155-160. https://doi.org/10.4489/KJM.2003.31.3.155
  19. Swain T, Hillis WE, Ortga M. Phenolic constituents of Prunus domestica. I. Quantitative analysis of phenolic constituents. J Sci Food Agric. 1959;10:83-88.
  20. Moreno MIN, Isla MI, Sampietro AR, Vattuone MA. Comparison of the free radical scavenging activity of propolis from several region of Argentina. J Enthnopharmcol. 2000;71:109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  21. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Immunol Meth. 1983;65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  22. Stirpe F, Corte Della E. The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem. 1969;244:3855-3863.
  23. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  24. Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci. 1976;73:2424-2428. https://doi.org/10.1073/pnas.73.7.2424
  25. Ma S, Liu H, Jiao H, Wang L, Chen L, Liang J, et al. Neuroprotective effect of ginkgolide K on glutamate-induced cytotoxicity in PC 12 cells via inhibition of ROS generation and $Ca^{2+}$ influx. Neurotoxicol. 2012;33:59-69. https://doi.org/10.1016/j.neuro.2011.11.003
  26. Ryu JH, Ahn H, Kim JY, Kim YK. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother Res. 2003;17:485-489. https://doi.org/10.1002/ptr.1180
  27. Winter CA, Risley EA, Nuss GW. Carrageenan induced edema in the hind paw of rat as an assay for anti-inflammatory activity. Proc Soc Exp Biol Med. 1962;111:544-547. https://doi.org/10.3181/00379727-111-27849
  28. Rocha-Guzmn NE, Gonzlez-Laredo JA, Conzalez-Laredo RF, Reynoso-Camacho R, Ramos-Gmez M, Garcia-Gasca T, et al. Antioxidant activity and genotoxic effect on HeLa cells of phenolic compounds from infusions of Quercus resinosa leaves. Food Chem. 2009;115:1320-1325. https://doi.org/10.1016/j.foodchem.2009.01.050
  29. Yim HS, Chye FY, Ho SK, Ho WC. Phenolic profiles of selected edible wild mushrooms as affected by extraction solvent, time and temperature. Asian J Food Ag-Ind. 2009;2:392-401.
  30. Ling X, Bochu W. A review of phytotherapy of gout: perspective of new pharmacological treatments. Pharmazie. 2014;69:243-256.
  31. Storch I, Ferber E. Detergent-amplified chemiluminescence of lucigenin for determination of superoxide amino production by NADPH oxidase and xanthine oxidase. Anal Biochem. 1988; 169:262-267. https://doi.org/10.1016/0003-2697(88)90283-7
  32. Costantino L, Albasini A, Rastelli G, Benvenuti S. Activity of polyphenolic crude extracts as scavengers of superoxide radicals and inhibitors of xanthine oxidase. Planta Med. 1992;58: 342-344. https://doi.org/10.1055/s-2006-961481
  33. Alam N, Yoon KN, Lee JS, Cho HJ, Lee TS. Consequence of the antioxidant activities and tyrosinase inhibitory effects of various extracts from the fruiting bodies of Pleurotus ferulae. Saudi J Biol Sci. 2012;19:111-118. https://doi.org/10.1016/j.sjbs.2011.11.004
  34. Tayebati SK, Di Tullio MA, Amenta F. Effect of treatment with the cholinesterase inhibitor rivastigmine on vesicular acetylcholine transporter and choline acetyltransferase in rat brain. Clin Exp Hypertens. 2004;26:363-373. https://doi.org/10.1081/CEH-120034140
  35. Nguyen TK, Shin DB, Lee KR, Shin PG, Cheong JC, Yoo YB, et al. Antioxidant, anti-inflammatory and anti-acetylcholinesterase activities of fruiting bodies of Phellinus xeranticus. J Mushroom Sci Prod. 2013;11:278-286. https://doi.org/10.14480/JM.2013.11.4.278
  36. Yoon KN, Lee TS. In vitro antioxidant, anti-hyperglycemic, anti- cholinesterase, and inhibition of nitric oxide production activities of methanol and hot water extracts of Russula rosacea mushroom. J Mushrooms. 2015;13:1-10. https://doi.org/10.14480/JM.2015.13.1.1
  37. Choi DW. Excitotoxic cell death. J Neurologic. 1991;23: 1262-1276.
  38. Naito M, Umegaki H, Iguchi A. Protective effects of probucol against glutamate-induced cytotoxicity in neuronal cell line PC 12. Neurosci Lett. 1995;186:211-213. https://doi.org/10.1016/0304-3940(95)11321-M
  39. Beal MF. Mechanisms of excitotoxicity in neurologic diseases. PASEB J. 1992;6: 3338-3344.
  40. Choi WH, Oh YS, Ahn JY, Kim SR, Ha TY. Antioxidative and protective effects of Ulmus davidiana var. japonicus extracts on glutamate-induced cytotoxicity in PC 12 cells. Korean J Food Sci Technol. 2005;37:479-483.
  41. Abbas AK, Lichtman AH, et al. Celluar and molecular immunology. 6th ed. Philadelphia: Saunders Elsevier; 2006. p75-77.
  42. Nathan C. Nitric oxide as a secretory product of mammalian cell. The FASEB J. 1992;6:3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  43. Willeaume V, Kruys V, Mijatovic T, Huez G. Tumor necrosis factor-alpha production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. J Inflamm. 1996;46:1-12.
  44. Jang HJ, Kim AK, Pyo MY. Yang KS. Inhibitors ofnnitric oxide syntheasis from Phellinus pini in murine macrophages. J Pharm Soc Korea. 2007;51:430-434.
  45. Fangkrathok N, Junlatat J, Sripanidkulchai B. In vivo and in vitro anti-inflammatory activity of Lentinus polychrous extract. J Ethnopharm. 2013;147:631-637. https://doi.org/10.1016/j.jep.2013.03.055
  46. Lee IG. Differential diagnosis and treatment of generalized edema. J Korean Acad Fam Med. 2003;24:6-10.
  47. Cho YS, Kim ND, Kim SA. Effects of concurrent administration of aspirin and prednisolone on the anti-inflammatory and antipyretic activities in rats. J Pharm Soc Korea. 1978;22:128-137.
  48. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA. 1994;91:12013-12017. https://doi.org/10.1073/pnas.91.25.12013
  49. Lim JH, Kim SH, Park NH, Moon CG, Kang, SS, Kim SH, Shin DH, Kim JC. Acute and chronic antiinflammatory effects of Phellinus linteus water extract in rats. J Biomed Res. 2010; 11:27-35.

Cited by

  1. 말뚝버섯 자실체의 항산화, 항콜린에스테라제 및 염증 저해 활성 vol.17, pp.3, 2019, https://doi.org/10.14480/jm.2019.17.3.152
  2. Semi-Continuous Subcritical Water Extraction of Flavonoids from Citrus unshiu Peel: Their Antioxidant and Enzyme Inhibitory Activities vol.9, pp.5, 2020, https://doi.org/10.3390/antiox9050360
  3. 장수진흙버섯 자실체 추출물의 다양한 생리활성 효과 vol.18, pp.3, 2018, https://doi.org/10.14480/jm.2020.18.3.260
  4. Organic Acid-Catalyzed Subcritical Water Hydrolysis of Immature Citrus unshiu Pomace vol.11, pp.1, 2022, https://doi.org/10.3390/foods11010018