Browse > Article

The Isolation of Acetylcholinesterase Inhibitory Constituents from Lycoris radiata using On-line HPLC-biochemical Detection System  

Yang, Hee-Jung (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University)
Yoon, Kee-Dong (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University)
Chin, Young-Won (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University)
Kim, Young-Choong (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University)
Kim, Jin-Woong (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University)
Publication Information
Natural Product Sciences / v.16, no.4, 2010 , pp. 228-232 More about this Journal
Abstract
Bioactivity-guided fractionation using on-line HPLC biochemical detection system on $CHCl_3$-soluble fraction of Lycoris radiata led to the isolation of deoxylycorenine (1), O-demethylhomolycorine (2), galanthamine (3), lycoramine (4), mixture of $6{\alpha}$-and $6{\beta}$-haemanthidine (5), and lycorine (6), identified by spectroscopic data and physicochemical property. Among the isolated compounds, 1, 3 and 6 showed acetylcholinesterase inhibitiory activities with $IC_{50}$ values of 18.0, 12.0 and $16.6\;{\mu}M$, respectively, in in vitro colorimetric microplate assay.
Keywords
Lycoris radiata; Amaryllidaceae; acetylcholinesterase; galanthamine; deoxylycorenine; lycorine; flow biochemical detection system; on-line HPLC-biochemical detection system;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Miyasaka, K., Hiramatsu, Y., Takezaki, T., Pharmacological studies of lycorenine, an alkaloid of Lycoris radiata Herb.: Vasodepressor mechanism in rats. Jpn J Pharmacol 29, 605-622 (1979).   DOI
2 Pabuccuoglu, V., Richomme, P., Gozler, T., Kivcak, B., Freyer, A. J., Shamma, M., Four New Crinine-Type Alkaloids from Sternbergia Species. J Nat Prod 52, 785-791 (1989).   DOI
3 Park, J. H., Sung, S. H., Haeksim-Yakyongsikmul. Sin-Il Books: Seoul pp 2-3 (2007).
4 Son, M., Kim, A., Lee, J., Park, C. H., Heo, J. C., Lee, H. J., Lee, S. H., Ethanol extract of Lycoris radiata induces cell death in B16F10 melanoma via p38-mediated AP-1 activation. Oncol Rep 24, 473-478 (2010).
5 Terry, A. V., Jr., Buccafusco, J. J., The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306, 821-827 (2003).   DOI   ScienceOn
6 Kihara, M., K., K., L., X., Kobayashi, S., Alkaloidal Constituents of the Flowers of Lycoris radiata Herb. (Amaryllidaceae). Chem. Pharm. Bull. 39, 1849-1853 (1991).   DOI
7 Kobayashi, S., Yuasa, K., Imakura, Y., Kihara, M., Shingu, T., Isolation of O-Demethyllycoramine from Bulbs of Lycoris radiata HERB. Chem. Pharm. Bull. 28, 3433-3436 (1980).   DOI
8 Krall, W. J., Sramek, J. J., Cutler, N. R., Cholinesterase inhibitors: a therapeutic strategy for Alzheimer disease. Ann Pharmacother 33, 441-450 (1999).   DOI   ScienceOn
9 Li, S. Y., Chen, C., Zhang, H. Q., Guo, H. Y., Wang, H., Wang, L., Zhang, X., Hua, S. N., Yu, J., Xiao, P. G., Li, R. S., Tan, X., Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 67, 18-23 (2005).   DOI   ScienceOn
10 Likhitwitayawuid, K., Angerhofer, C. K., Chai, H. B., Pezzuto, J. M., Cordell, G. A., Traditional Medicinal-Plants of Thailand .22. Cytotoxic and Antimalarial Alkaloids from the Bulbs of Crinum-Amabile. J Nat Prod 56, 1331-1338 (1993).   DOI   ScienceOn
11 Codina, C., Bastida, J., Viladomat, F., Fernandez, J. M., Bergonon, S., Rubiralta, M., Quirion, J. C., Alkaloids from Narcissus-Munozii- Garmendiae. Phytochemistry 32, 1354-1356 (1993).   DOI   ScienceOn
12 Ingkaninan, K., de Best, C. M., van der Heijden, R., Hofte, A. J., Karabatak, B., Irth, H., Tjaden, U. R., van der Greef, J., Verpoorte, R., High-performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. J Chromatogr A 872, 61-73 (2000).   DOI   ScienceOn
13 Jegorov, A., Buchta, M., Sedmera, P., Kuzma, M., Havlicek, V., Accurate product ion mass spectra of galanthamine derivatives. J Mass Spectrom 41, 544-548 (2006).   DOI   ScienceOn
14 Bores, G. M., Huger, F. P., Petko, W., Mutlib, A. E., Camacho, F., Rush, D. K., Selk, D. E., Wolf, V., Kosley, R. W., Jr., Davis, L., Vargas, H. M., Pharmacological evaluation of novel Alzheimer's disease therapeutics: acetylcholinesterase inhibitors related to galanthamine. J Pharmacol Exp Ther 277, 728-738 (1996).
15 Kiely, J. S., Moos, W. H., Pavia, M. R., Schwarz, R. D., Woodard, G. L., A silica gel plate-based qualitative assay for acetylcholinesterase activity: a mass method to screen for potential inhibitors. Anal Biochem 196, 439-442 (1991).   DOI   ScienceOn
16 Blennow, K., de Leon, M. J., Zetterberg, H., Alzheimer's disease. Lancet 368, 387-403 (2006).   DOI   ScienceOn