• Title/Summary/Keyword: gain tuning

Search Result 381, Processing Time 0.03 seconds

Real-time Fuzzy Tuned PID Control Algorithm (실시간 퍼지 동조 PID 제어 알고리즘)

  • Choi Jeong-Nae;Oh Sung-Kwun;Hwang Hyung-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.423-426
    • /
    • 2005
  • In this paper, we proposed a PID tuning algorithm by the fuzzy set theory to improve the performance of the PID controller. The new tuning algorithm for the PID controller has the initial value of parameter Kp, $\tau_{I}$, $\tau_{D}$. by the Ziegler-Nichols formula that uses the ultimate gain and ultimate period from a relay tuning experiment. We will get the error and the error rate of plant output corresponding to the initial value of parameter and fnd the new proportion gain(Kp) and the integral time ($\tau_{I}$) from fuzzy tuner by the error and error rate of plant oueut as a membership function of fuzzy theory. This fuzzy auto tuning algorithm for PID controller considerably reduced the overshoot and rise time as compared to any other PID controller tuning algorithms. And in real parametric uncertainty systems, it constitutes an appreciable improvement of performance. The significant property of this algorithm is shown by simulation

  • PDF

Neural Network Tuning of the 2-DOF PID Controller With a Combined 2-DOF Parameter For a Gas Turbine Generating Plant

  • Kim, Dong-Hwa
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.95-103
    • /
    • 2001
  • The purpose of Introducing a combined cycle with gas turbine in power plants is to reduce losses of energy, by effectively using exhaust gases from the gas turbine to produce additional electricity or process. The efficiency of a combined power plant with the gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a combined 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul, Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controllers.

  • PDF

A Small-Area Solenoid Inductor Based Digitally Controlled Oscillator

  • Park, Hyung-Gu;Kim, SoYoung;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.198-206
    • /
    • 2013
  • This paper presents a wide band, fine-resolution digitally controlled oscillator (DCO) with an on-chip 3-D solenoid inductor using the 0.13 ${\mu}m$ digital CMOS process. The on-chip solenoid inductor is vertically constructed by using Metal and Via layers with a horizontal scalability. Compared to a spiral inductor, it has the advantage of occupying a small area and this is due to its 3-D structure. To control the frequency of the DCO, active capacitor and active inductor are tuned digitally. To cover the wide tuning range, a three-step coarse tuning scheme is used. In addition, the DCO gain needs to be calibrated digitally to compensate for gain variations. The DCO with solenoid inductor is fabricated in 0.13 ${\mu}m$ process and the die area of the solenoid inductor is 0.013 $mm^2$. The DCO tuning range is about 54 % at 4.1 GHz, and the power consumption is 6.6 mW from a 1.2 V supply voltage. An effective frequency resolution is 0.14 kHz. The measured phase noise of the DCO output at 5.195 GHz is -110.61 dBc/Hz at 1 MHz offset.

Iterative Tuning of PID Controller by Fuzzy Indirect Reasoning and a Modified Zigler-Nichols Method (퍼지 간접추론법과 수정형 지글러-니콜스법에 의한 비례-적분-미분 제어기의 점진적 동조)

  • Kim, S.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.74-83
    • /
    • 1996
  • An iterative tuning technique is derived for PID controllers which are widely used in industries. The tuning algorithm is based upon a fuzzy indirect reasoning method and an iterative technique. The PID gains for the first tuning action are determined by a method which is modified from the Ziegler-Nichols step response method. The first PID gains are determined to obtain a control performance so close to a design performance that the following tuning process can be made effectively. The design paramaters are given as time-domain variables which human is familiar with. The results of simulation studies show that the proposed tuning method can produce an effective tuning for arbitrary design performances.

  • PDF

Design of a permanent magnetic synchronous motor speed servo controller using on-line tuning PI control method (온라인 동조 PI 제어기법을 이용한 영구자석형 동기전동기의 속도 제어기 설계)

  • Jun, In-Hyo;Im, Sang-Duck;Choi, Jung-Keyng;Park, Seung-Yub
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.36-45
    • /
    • 1998
  • In this paper, a method of on-line PI gain-tuninng is proposed for the speed control of brushless D.C. motor by investigating the pattern of input and output without estimating parameter. Proportional gain is tuned in the process to obtain a fast speed response by supplying the maximum constant input. And integral gain is appropriately tuned in the process of proportional control so that the response may be stably converged and the overshoot may be prevented. Therefore because both control and gain-tuning are executed concurrently, additional works that estimate parameters and so on aren't required in the proposed method. In the proposed method, both fast-response and overshoot problem are well solved, and it is more useful and convenient than existing auto-tuning methods in the speed control of D.C. motor. It is illustrated by simulations and experimental results that the proposed method is useful and stable.

  • PDF

A study of Self-Tuning PI Speed Controller Based on Fuzzy for Permanent Magnet Linear Synchronous Motor (선형 영구자석형 동기 전동기의 Fuzzy 기반 Self-Tuning PI 속도 제어기에 관한 연구)

  • Lee Chin-Ha;Choi Cheol;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.602-611
    • /
    • 2004
  • Servo system has commonly adapted PI controller with fixed gains, because of its simplicity and determinative relationship among the parameters. The fixed gains PI system may be applied well to some operation conditions, but not non-linearities, complex and time variant operation conditions. For solving these problems, another conventional method, 'variable gun schedule according to speed', is published. The value of gain is determined according to the absolute value of the mover real speed. In this paper, FSTPIC(Fuzzy Self-Tuning PI Controller) is proposed based on various experiences to rapidly reduce speed error and to secure a good speed response characteristics. The effectiveness of proposed algorithms is demonstrated by comparing to two conventional gain systems via 4-quadrant operation.

Online Automatic Gauge Controller Tuning Method by using Neuro-Fuzzy Model in a Hot Rolling Plant

  • Choi, Sung-Hoo;Lee, Young-Kow;Kim, Sang-Woo;Hong, Sung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1539-1544
    • /
    • 2005
  • The gauge control of the fishing mill is very important because more and more accurately sized hot rolled coils are demanded by customers recently. Because the mill constant and the plasticity coefficient vary with the specifications of the mill, the classification of steel, the strip width, the strip thickness and the slab temperature, the variation of these parameters should be considered in the automatic gauge control system(AGC). Generally, the AGC gain is used to minimize the effect of the uncertain parameters. In a practical field, operators set the AGC gain as a constant value calculated by FSU (Finishing-mill Set-Up model) and it is not changed during the operating time. In this paper, the thickness data signals that occupy different frequency bands are respectively extracted by adaptive filters and then the main cause of the thickness variation is analyzed. Additionally, the AGC gain is adaptively tuned to reduce this variation using the online tuning model. Especially ANFIS(Adaptive-Neuro-based Fuzzy Interface System) which unifies both fuzzy logics and neural networks, is used for this gain adjustment system because fuzzy logics use the professionals' experiences about the uncertainty and the nonlinearity of the system. Simulation is performed by using POSCO's data and the results show that proposed on-line gain adjustment algorithm has a good performance.

  • PDF

Response Surface Tuning Methods in PID Control of the Magnetic Levitation Conveyor System (반응 표면법을 이용한 자기부상 반송장치의 PID 이득값 조정)

  • Bae, Kyu-Young;Kim, Chang-Hyun;Kim, Bong-Seup
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2609-2614
    • /
    • 2011
  • A proportional integral derivative (PID) controller is designed and applied to a magnetic levitation conveyor system to control the levitation gap length of the electromagnet constantly. The PID gain parameters are optimized by response surface methods (RSM). The controller is verified with the state-space model of electromagnetic suspension by MATLAB/SIMULINK program. And, the controller and the state-space model are also verified experimentally. Simulation and experimental results shows the effectiveness of the PID gain tuning by RSM as compared with the classical PID tuning.

  • PDF

Intelligent Tuning of PID Controller With Disturbance RejectionUsing Immune Algorithm

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.885-890
    • /
    • 2004
  • Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature, the change of the dynamic characteristics in the reheater. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on tuning of the Controller with disturbance rejection for thermal power plant using immune based multiobjective approach. An ITSE(Integral of time weighted squared error) is used to decide performance of tuning results.

  • PDF

IMC-PID Controller Tuning using Loop Shaping Method (루프 형성 기법을 이용한 IMC-PID 제어기 동조)

  • Kim, Chang-Hyun;Lim, Dong-Kyun;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.95-97
    • /
    • 2004
  • This paper proposed new IMC-PID controller design method that use loop shaping method. It could consider such design specifications as gain margin, phase margin, sensitivity function etc by appling the loop shaping method for tuning IMC-PID controller whose structure has only one design parameter and guarantees internal stability. To shape desirable loop gain, the relation between these design specification and parameter is derived by mathematical basis. And the availability of proposed in this paper tuning method that can regard design specifications is checked through example comparison and analysis.

  • PDF