
1. Introduction

There has been a continuing interest in the study of large

systems such as power plant [1-2]. This can be explained by 

the fact that many control problems of modern industrial 
system are associated with the control of complex

interconnected systems. An electric power plant is divided 
into subsystems: boile r, turbine, and generator. Once a local 

controller is designed for each subsystem, the three

components are connected together.

However, if the overall system is to be driven to an operating 

point different from the design point, the interaction

variables are very likely to vary from their design values.

Therefore, the local controllers need to be robust in order to 
accommodate these variations. When control theory is

applied to solve problems of power plant systems, the
decentralized controller is usually required for an excessive 

information gathering and an extensive computational

requirement to make such a controller system to apply.

Up to now, a Proportional – Integral – Derivative (PID) 

controller has been used in the control system of power plant. 

However, it cannot effectively control such a complicated or 

fast running system, since the response of a plant depends on 

only the gain P, I, and D. There are many well known PI and 

PID tuning formulas for stable processes that are suitable for 

autotuning and adaptive control [3, 4]. However, PID tuning 

formulas for unstable processes are less common. Of course, 

there are several approaches to tuning the PID controllers for 

unstable processes. De Paor and O'Malley [5] derived PID 

tuning methods of the Ziegler-Nichols type for unstable 

first-order plus time -delay processes. 

This paper also addresses whether an intelligent tuning

method by multiobjective based on an immune algorithm 

can be used effectively for disturbance rejection on control
system of power plant.

2. Control Characteristics Of Thermal Power Plant For 

Controller Design

2.1 Control Characteristic in the Thermal Power Plant 

A thermal power plant is mainly composed of one boiler 

whose steam output feeds one turbine, driving a generator.

There are many available models for each subsystem with a 

varying degree of complexity and accuracy. The models are
nonlinear MIMO system, obtained through both physical and 

empirical methods and compared well against actual plant 

data [6]. The boiler model is six states depending on
modeling approaches for dynamics of the steam quality. In 

fact, they cause unnecessary spikes in the drum level

response.

2.2  Turbine/Governor Models

The model is composed of a mechanical-hydraulic

speed-governing system and a tandem compound, single 

reheat steam turbine.

2.3  Generator/Exciter Models

It is a nonlinear 7th order model, which is  developed by 

Anderson and Fouad, described in terms of flux linkages  [2].

The synchronous machine under consideration is assumed to 

have three stator windings, one field winding, and two 
damper windings. These windings are magnetically coupled 

and the magnetic coupling is a function of the rotor position.

Direct axis acquations [1-2]:
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Where DFd and λλλ ,,  are the direct axis, field, and

damper flux linkages, respectively, and Bω  and ω  are the 

based frequency and actual frequency respectively.

The mutual flux linkage is given by:

)///( DDFFddMDAD lllL λλλλ +++= ,             (4)

And the d-axis and field currents are given by

),)(/1( ADddd li λλ −=                           (5)

),)(/1( ADFFF li λλ −= (6)

Quadrature axis equations:
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Where qλ  and Qλ  are the quadrature axis and damper 

flux linkages, respectively. The mutual flux linkage is given 
by

),//( QQqqMQAQ llL ++= λλλ                   (9)

And the q-axis current is given by

),)(/1( AQqqq li λλ −=                         (10)

Equations for frequency and rotor angle:

The frequency deviation is given as a function of the 

mechanical torque and electric torque. 
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Where δω andTT emu ,,,∆  are the per-unit frequency

deviation, mechanical torque, electric torque, and rotor angle, 

respectively.

Exciter model:
The model used also includes an IEEE type 1 excitation 

system which is a combination of a regulator, an exciter, and 

a stabilizer. The block diagram of the excitation system is 

shown in Fig.1.
A power system stabilizer and a saturation function are 

also included in the model. More details about the model can 

be found in [3]. It is worth mentioning at this point that the 

model includes an infinite bus through a transmission line. 
Table 1 presents some of the typical values used for the 

model.
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Fig.1.IEEE Type 1 excitation system.

Table 1. Typical value for generator/exciter variable.
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3. Power Plant Control
 

The power plant under study in this paper is composed of 
boiler, turbine, and generator. The control strategy for

disturbance rejection controller design is to decompose the 
plant into 3 subsystems of boiler, governor/turbine, and

generator/exciter and to independently design a robust

controller with disturbance rejection for each subsystem.

3.1  Boiler Local Controller

The two inputs to the boiler are the fuel valve (U1) and the 

feedwater valve (U3). The two outputs are steam pressure (P) 

and the drum water level deviation ( Lδ ). Note that the 

governor valve (U2) affects the boiler. However, since this 
valve is under the control of the governor, it is considered as

a constant interaction variable.

For a controller to meet these objectives, the immune
algorithm based tuning approaches for disturbance rejection 

is used that controller is to be robust.

3.2  Governor/Turbine Controller

The input to the governor is the mechanical power
demand (PO) and the output of the turbine is the mechanical 

power (PM). Also, the governor receives the speed deviation 
(DW) from the generator and the turbine receives pressure 
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effect from the boiler. However, since these two variables are

outputs of the other subsystems, they are taken as constant 

boundary conditions with uncertainties. 

Here, also, the immune algorithm based controller for
disturbance rejection is chosen to meet these objectives.

C. Generator Local Controller

The genera tor model has as input the reference voltage 

(Vr), and as output the terminal voltage (Vt).

4. PID Controller Tuning With Disturbance Rejection By 

Immune Algorithms

4.1 Immune Algorithm

The coding of an antibody in an immune network is very 

important because a well designed antibody coding can

increase the efficiency of the controller. As shown in Fig. 2, 

there are three types antibodies in this paper: 1) antibody 

type 1 is encoded to represent only P gain in the PID 

controller; 2) antibody type 2 is enco ded to represent I gain; 

3) antibody is encoded to represent D gains. The value of the 

k locus of antibody type 1 shows P gain allocated to route 1. 

That is, the value of the first locus of antibody type 1 means 

that P gain allocated to route 1 is obtained by route 2 [12].

P 2 1 0.5 • • • 0.2 0.1

I 2 1 0.5 • • • 0.2 0.12

D 2 1 0.5 • • • 0.2 0.1

Fig. 2. Allocation structure of P, I, D gain in locus of antibody of immune 

algorithm.

On the other hand, the k locus of antibody 2 represents I 

gain for tuning of the PID controller with disturbance

rejection function. Here, the objective function can be

written as follows. This algorithm is implemented by the 

following procedures.

[step 1] Initialization and recognition of antigen: The

immune system recognizes the invasion of an antigen, which 

corresponds to input data or disturbances in the optimization 

problem.

[step 2] Product of antibody from memory cell: The immune 

system produces the antibodies that were effective to kill the 

antigen in the past. This is implemented by recalling a past 

successful solution from memory cell.

[step 3] Calculation for searching a optimal solution.

[step 4] Differentiation of lymphocyte: The B - lymphocyte 

cell, the antibody that matched the antigen, is dispersed to 

the memory cells in order to respond to the next invasion 

quickly.

[step 5] Stimulation and suppression of antibody: The

expected value 
kη  of the stimulation of the antibody is

given by

k

k

k

m

σ
η ϕ= (13)

where
k

σ  is the concentration of the antibodies. The

concentration is calculated by affinity based on phenotype 

but not genotype because of the reduction of computing time. 

So,
kσ is represented by

kσ =
antibodiesofsum

masaffinitysamewithantibodiesofsum
kϕ

. (14)

Using equation (6), a immune system can control the

concentration and the variety of antibodies in the

lymphocyte population. If antibody obtains a higher affinity 

against an antigen, the antibody stimulates. However, an 

excessive higher concentration of an antibody is suppressed. 

Through this function, an immune system can maintain the 

diversity of searching directions and a local minimum.

[step 6] Stimulation of Antibody: To capture the unknown 

antigen, new lymphocytes are produced in the bone marrow 

in place of the antibody eliminated in step 5. This procedure 

can generate a diversity of antibodies by a genetic

reproduction operator such as mutation or crossover. These 

genetic operators are expected to be more efficient than the 

generation of antibodies.

4.2 Optimized Parameter Selection for Disturbance

Rejection by Immune Algorithm

Conventional optimization techniques, such as

gradient-based and simplex-based methods, were not

designed to cope with multiple-objectives search problems, 

which have to be transformed into single objective problems 

prior to optimization. 

On the other hand, evolutionary algorithms are considered to 
be better tailored to multiple-objectives optimization

problems. This is mainly due to the fact that multiple 

individuals are sampled in parallel, and the search for 

multiple solutions can be more effective. This section Stats 
by reviewing some basic approaches utilized in conjunction 

with evolutionary computation for multiple -objective
optimization. Later, we propose a novel technique to handle 

this problem.

Evolutionary algorithms typically work with a scalar

number to reward individuals’  performance, the fitness value. 

In the case of a single-objective optimization problem, we 

call this scalar )(xf  where x  is a particular individual. 

Considering a multiple-objective problem, we can now

define the fitness vector )(xf :

))(),...,(),(()( 21 xfxfxfxf n=           (15)

where )(xfi  represent the scalar components of )( xf .

The search problem is now restated to the me of seeking for 

optimal values for all the functions )(xfi . This is the most 

straightforward approach, to transform the objective vector 

in a scalar. It is simply accomplished by the traditional 

weighted sum, i.e.,
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Chromosome representation: there are six control

parameters ],,,,,[ ηβαdip KKK  to be determined for an 

adaptive optimal control. Now, the chromosome is given as 

],,,,,,,[ 21 TTKKKf dip χβα= ,           (17)

tt fwfwf 21 += , 321 fffft ++= ,

],,,[],,,,[ 2211 ηβα dip KKKwTTw == ,

with a real-number representation.

Objective functions: for the general control problem, it is 

desirable to optimize a number of different system

performances. Consider a step input R(t) and the output 

response Y(t). The following objectives are stated for design.

- Minimizing the maximum overshoot of the output

)(max1 tYOVf
t

==                   (18)

- Minimizing the settling time of the output

stSTf ==2                         (19)

such that .,02.1)(98.0 sttRtYR ≥∀≤≤
- Minimizing the rise time of the output

213 ttRTf −==                        (20)

such that .9.0)(1.0)( 21 RtYandRtY ==

4.3 Disturbance Rejection Based on Immune Algorithms 

For the solution of the constrained optimization problem, 

two real-coded IMs are employed, i.e., IM_1 to minimize the 

performance index )k(nI , and IM_2 to maximize the

disturbance rejection constraint )k,(ωα , as depicted in Fig. 

2. Initially, IM_1 is started with the controller parameters 

within the search domain as specified by the designer. These 
parameters are transferred then to IM_2, which is initialized 

with the variable frequency ω .

 IM _2 maximizes the disturbance rejection constraint

during a fixed number of generations for each individual of 

GA 1. Next, if the maximum value will be associated to the 

corresponding individual of IM_1. Individuals of IM_1 that 
satisfy the disturbance rejection constraint will not be

penalized. In the evaluation of the fitness function of IM_1, 
individuals with higher fitness values are selected

automatically and those penalized will not survive the
evolutionary process.

For the implementation of the IM, we used tournament 

selection, arithmetic crossover, and mutation [10].

A. Representation

 In the immune based representation, the parameters of the 

controller were coded in floating - point and concatenated in 

an individual for IM_1. For IM_1, an individual consists of 

only one gene (frequency ? ). The IMs were initialized 

randomly.

B. Fitness Function
An approach using penalty function [10] is employed to 

solve the constrained optimization problem.

 Let the ITSE performance index be )k(nI . Then the value 

of the fitness of each individual of IM_1 ),.......1(k 1µ=ii  is 

determined by the evaluation function, denoted by )k(1 iF

as

))k()k(()k( i1 iin PIF +−= (21)

where 1µ  denotes the population size of GA_1. The penalty 

function )k( iP  is discussed in the following. 

 Let the disturbance rejection constraint be 5.0
))k,(max( iωα .

The value of the fitness of each individual of
IM_2 ),...,1( 2µω =jj is determined by the evaluation function, 

denoted by )(2 jF ω  as 

),()(2 ij kF ωαω =                           (22)

where 2µ denotes the population size of IM_2.

The penalty for the individual ik  is calculated by means 

of the penalty function )( ikP given by
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If the individual ik  does not satisfy the stability test 

applied to the characteristic equation of the system, then ik

is an unstable individual and it is penalized with a very large 

positive constant 2M . Automatically, ik  does not survive 

the evolutionary process. If ik  satisfies the stability test, 

but not the disturbance rejection constraint, then it is an 
infeasible individual and is penalized with ),(max1 ikaM ω⋅ ,

where 1µ  is a positive constant to be adjusted. Otherwise,

the individual ik  is feasible and is not penalized.

5. Simulations And Discussions

5.1  Simulation of the immune algorithm based PID

Controller on the Thermal Power Plant
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Fig. 8. Response to disturbance rejection. (Pc=0.1,
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Fig. 9. Response to disturbance rejection. (Pc=0.29,

Pm=0.35)
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Fig. 10. Response to disturbance rejection. (Pc=0.52,

Pm=0.35)
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Fig. 4. Response to average values on parameter learning of 

immune network. (Pm=0.35, Pc=0.1 to 0.5)

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step Response(fixed pm=0.35)

time

y
(t
)

pc=0.28

pc=0.29
pc=0.30

pc=0.31
pc=0.32

pc=0.33

pc=0.31

pc=0.29

pc=0.33

pc=0.30
pc=0.32

pc=0.28

Fig. 5. Response to average values on parameter learning of 

immune network. (Pm=0.35, Pc=0.28 to 0.33)
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Fig. 6. Response to average values on parameter learning of 

immune network. (Pm=0.5, Pc=0.42 to 0.47)
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Fig. 7. Response to average values on parameter learning of 

immune network. (Pc=0.29, Pm=0.1 to 0.5)

The

Simulation results are shown as Fig. 4-7. Fig. 5 represents 

response to average values on parameter (Pm=0.35, Pc=0.1 

to

0.5) learning of immune network on parameters of the given 

power plant model.

Also, Fig. 6 illustrates response to the average of

crossover based learning parameter (Pm=0.5, Pc=0.42 to
0.47) of immune network and Fig. 7 is response to the

average of mutation based learning parameter (Pc=0.29,
Pm=0.1 to 0.5) of immune network. On the other hand, Figs. 

8-10 show response to disturbance rejection depending on

parameter variation when crossover and mutation change, 

respectively. The table 1 and 2 depict parameter value 
depending on permutation variation (Pc).

6. Conclusions

Up to now, the PID controller has been used to operate the 

Fig. 3. Block diagram of power plant under consideration.
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power plants. However, achieving an optimal PID ga in is 

very difficult for the steam temperature control loop with 

disturbances and without any control experience since the 

gain of the PID controller has to be tuned manually by trial 

and error the design of the PID controller may not cover a 

plant with complex dynamics, such as large dead time, 

inverse response, and a highly nonlinear characteristic.

To design an optimal controller that can actually be

operated on a generating system, this paper focuses on

tuning of PID controller with disturbance rejection using

immune algorithm. For this purpose, we suggest an immune 

algorithm based multiobjective tuning method for the PID 

controller. Parameters P, I, and D encoded in antibody are 

randomly allocated during selection processes to obtain an 

optimal gain for plant.

Table 1. Parameter value depending on permutation variation (Pc).

Table 2. Parameter value depending on permutation variation (Pc).

The object function can be minimized by gain selection 

for control, and the variety gain is obtained as shown in 

Table 1 and 2. The suggested controller can also be used 

effectively in the power plant since the controller needs no 

feedforward or cascade loop.
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Kp Td A. Ti a b c d e f
Pc=0.10 5.8454 1.6732 19.865 348.57 271.61 177.66 314.14 67.779 359.92
Pc=0.15 7.4582 0.05142 26.412 358.43 266.33 243.17 314.14 67.779 359.92

Pc=0.20 16.201 0.02176 27.842 237.77 244.69 279.14 314.14 67.779 359.92
Pc=0.25 7.322 0.00958 18.72 300.68 258.62 224.93 314.14 67.779 359.92

Pc=0.30 21.339 20.489 33.092 185.22 250.58 180.56 302.75 102.6 306.81

Pc=0.35 5.7534 15.607 26.966 305.97 235.63 211.14 300.52 77.984 281.62
Pc=0.40 16.026 22.067 27.995 211.55 283.94 198.09 268.08 97.794 128.67

Pc=0.45 8.2225 4.9614 24.898 294.16 240.15 148.32 311.11 68.524 352.67
Pc=0.50 6.9902 29.222 38.304 280.48 277.11 253.82 265.11 103.09 139.72

` Kp Td B. Ti a b c d e f

Pc=0.28 7.5935 0.020934 32.17 235.34 162.8 157.75 314.14 67.779 359.92
Pc=0.29 11.086 17.803 29.326 218.24 301.42 198.53 298.1 143.31 226.88

Pc=0.30 21.339 20.489 33.092 185.22 250.58 180.56 302.75 102.6 306.81
Pc=0.31 10.028 21.443 26.728 167.39 303.41 131.84 358.29 275.84 318.73

Pc=0.32 6.9831 0.66115 30.341 153.25 279.98 103.38 358.37 275.84 318.73
Pc=0.33 12.288 12.176 24.555 258.26 253.67 278.87 276.81 63.038 294.76
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