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Abstract: Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay

changes in the main steam temperature, the change of the dynamic characteristics in the reheater. Up to the present time, PID
Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience,

since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on tuning of the Controller with
disturbance rejection for thermal power plant using immune based multiobjective approach. An ITSE(Integral of time weighted

squared error) is used to decide performance of tuning results.
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1. Introduction

There has been a continuing interest in the study of large
systems such as power plant [1-2]. This can be explained by
the fact that many control problems of modern industrial
system are associated with the control of complex
interconnected systems. An electric power plant is divided
into subsystems: boiler, turbine, and generator. Once a local
controller is designed for each subsystem, the three
components are connected together.

However, if the overall system is to be driven to an operating
point different from the design point, the interaction
variables are very likely to vary from their design values.
Therefore, the local controllers need to be robust in order to
accommodate these variations. When control theory is
applied to solve problems of power plant systems, the
decentralized controller is usually required for an excessive
information gathering and an extensive computational
requirement to make such a controller system to apply.

Up to now, a Proportional — Integral — Derivative (PID)

controller has been used in the control system of power plant.

However, it cannot effectively control such a complicated or
fast running system, since the response of a plant depends on
only the gain P, I, and D. There are many well known PI and
PID tuning formulas for stable processes that are suitable for
autotuning and adaptive control [3, 4]. However, PID tuning
formulas for unstable processes are less common. Of course,
there are several approaches to tuning the PID controllers for
unstable processes. De Paor and O'Malley [5] derived PID
tuning methods of the ZieglerNichols type for unstable
first-order plus time -delay processes.

This paper also addresses whether an intelligent tuning
method by multiobjective based on an immune algorithm
can be used effectively for disturbance rejection on control
system of power plant.

2. Control Characteristics Of Thermal Power Plant For
Controller Design

2.1 Control Characteristic in the Thermal Power Plant

A thermal power plant is mainly composed of one boiler
whose steam output feeds one turbine, driving a generator.
There are many available models for each subsystem with a
varying degree of complexity and accuracy. The modek are
nonlinear MIMO system, obtained through both physical and
empirical methods and compared well against actual plant
data [6]. The boiler model is six states depending on
modeling approaches for dynamics of the steam quality. In
fact, they cause unnecessary spikes in the drum level
response.

2.2 Turbine/Governor Models

The model is composed of a mechanical-hydraulic
speed-governing system and a tandem compound, single
reheat steam turbine.

2.3 Generator/Exciter Models

It is a nonlinear 7th order model, which is developed by
Anderson and Fouad, described in terms of flux linkages [2].
The synchronous machine under consideration is assumed to
have three gator windings, one field winding, and two
damper windings. These windings are magnetically coupled
and the magnetic coupling is a function of the rotor position.

Direct axis acquations [1-2]:
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Where Ay, Ap, and Ap
damper flux linkages, respectively, and @z and o are the

are the direct axis, field, and

based frequency and actual frequency respectively.
The mutual flux linkage is given by:

Aap = Lyp(Aa/ly+Ap + /1 + Ap/lp) , “

And the d-axis and field currents are given by
ia =(1/1a)(%a = Aap), ©)
ip = (U Ip) A = A4p), (©)
Quadrature axis equations:
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Where A, and Ay are the quadrature axis and damper

flux linkages, respectively. The mutual flux linkage is given
by

Ao = Lug(hy /1, +Ag +/1p), ©)

And the gq-axis current is given by
iq = (l/lq)(lq _A’AQ)s
Equations for frequency and rotor angle:

The frequency deviation is given as a function of the
mechanical torque and electric torque.

(10)
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Where @ay, Ty, T, and § are the per-unit frequency

deviation, mechanical torque, electric torque, and rotor angle,
respectively.

Exciter model:

The model used also includes an IEEE type 1 excitation
system which is a combination of a regulator, an exciter, and
a stabilizer. The block diagram of the excitation system is
shown in Fig. 1.

A power system stabilizer and a saturation function are
also included in the model. More details about the model can
be found in [3]. It is worth mentioning at this point that the
model includes an infinite bus through a transmission line.
Table 1 presents some of the typical values used for the
model.

Vr
Wt + EFD
—C —
Stabilizing
Feedback
Regulator = Kq , Exciter = ——,

1+rys Kg +7gs

Stabilizer = Kr

1+7ps

Fig. 1.IEEE Type 1 excitation system.

Table 1. Typical value for generator/exciter variable.

Exciter
K,=400 Kp=-017 Kp=0.04 Vp=L1lpu
7,4=005 1,=05 7=10
Generator

=377 r=0.0011 lq =0.15 o =0.054
lp = 0.036 7 =0.0007 ;=015 I =0.101
Ip =0.055 Ly =0.02825 rp=0.0131 D=2.0
H =0.055 L)0.02848

3. Power Plant Control

The power plant under study in this paper is composed of
boiler, turbine, and generator. The control strategy for
disturbance rejection controller design is to decompose the
plant into 3 subsystems of boiler, governor/turbine, and
generator/exciter and to independently design a robust
controller with disturbance rejection for each subsystem.

3.1 Boiler Local Controller

The two inputs to the boiler are the fuel valve (U;) and the
feedwater valve (Us). The two outputs are steam pressure (P)
and the drum water level deviation (8L ). Note that the
governor valve (U,) affects the boiler. However, since this
valve is under the control of the governor, it is considered as
a constant interaction variable.

For a controller to meet these objectives, the immune
algorithm based tuning approaches for disturbance rejection
isused that controller is to be robust.

3.2 Governor/Turbine Controller

The input to the governor is the mechanical power
demand (PO) and the output of the turbine is the mechanical
power (PM). Also, the governor receives the speed deviation
(DW) from the generator and the turbine receives pressure
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effect from the boiler. However, since these two variables are
outputs of the other subsystems, they are taken as constant
boundary conditions with uncertainties.

Here, also, the immune algorithm based controller for
disturbance rejection is chosen to meet these objectives.

C. Generator Local Controller
The generator model has as input the reference voltage
(Vy), and as output the terminal voltage (V).

4. PID Controller Tuning With Disturbance Rejection By
Immune Algorithms

4.1 Immune Algorithm

The coding of an antibody in an immune network is very
important because a well designed antibody coding can
increase the efficiency of the controller. As shown in Fig. 2,
there are three types antibodies in this paper: 1) antibody
type 1 is encoded to represent only P gain in the PID
controller; 2) antibody type 2 is encoded to represent I gain;
3) antibody is encoded to represent D gains. The value of the
k locus of antibody type 1 shows P gain allocated to route 1.
That is, the value of the first locus of antibody type 1 means
that P gain allocated to route 1 is obtained by route 2 [12].

LP |21 ]o5]eeefo02]01]
| 1 [o05][eeef02]0.12]
LD |2 [ 1 Jo5]eee]02]01]

Fig. 2. Allocation structure of P, I, D gain in locus of antibody of immune
algorithm.

[ 1] 2

On the other hand, the k locus of antibody 2 represents I
gain for tuning of the PID controller with disturbance
rejection function. Here, the objective function can be
written as follows. This algorithm is implemented by the
following procedures.

[step 1] Initialization and recognition of antigen: The
immune system recognizs the invasion of an antigen, which
corresponds to input data or disturbances in the optimization
problem.

[step 2] Product of antibody from memory cell: The immune
system produces the antibodies that were effective to kill the
antigen in the past. This is implemented by recalling a past
successful solution from memory cell.

[step 3] Calculation for searching a optimal solution.

[step 4] Differentiation of lymphocyte: The B -lymphocyte
cell, the antibody that matched the antigen, is dispersed to
the memory cells in order to respond to the next invasion
quickly.

[step 5] Stimulation and suppression of antibody: The
expected value 77, of the stimulation of the antibody is

given by

m_,
n =—= (13)
O-k
where o, is the concentration of the antibodies. The

k
concentration is calculated by affinity based on phenotype
but not genotype becauseof the reduction of computing time.
So, o, is represented by

sum of antibodieswith same affinity as m

o, % (14)

sumof antibodies

Using equation (6), a immune system can control the
concentration and the variety of antibodies in the
lymphocyte population. If antibody obtains a higher affinity
against an antigen, the antibody stimulates. However, an
excessive higher concentration of an antibody is suppressed.
Through this function, an immune system can maintain the
diversity of searching directions and a local minimum.

[step 6] Stimulation of Antibody: To capture the unknown
antigen, new lymphocytes are produced in the bone marrow
in place of the antibody eliminated in step 5. This procedure
can generate a diversity of antibodies by a genetic
reproduction operator such as mutation or crossover. These
genetic operators are expected to be more efficient than the
generation of antibodies.

42 Optimized Parameter Selection for Disturbance
Rejection by Immune Algorithm

Conventional  optimization  techniques, such as
gradient-based and simplex-based methods, were not
designed to cope with multiple-objectives search problems,
which have to be transformed into single objective problems
prior to optimization.

On the other hand, evolutionary algorithms are considered to
be better tailored to multiple-objectives optimization
problems. This is mainly due to the fact that multiple
individuals are sampled in parallel, and the search for
multiple solutions can be more effective. This section Stats
by reviewing some basic approaches utilized in conjunction

with evolutionary computation for multiple-objective
optimization. Later, we propose a novel technique to handle
this problem.

Evolutionary algorithms typically work with a scalar
number to reward individuals’ performance, the fitness value.
In the case of a single-objective optimization problem, we

call this scalar f(X) where x is a particular individual.

Considering a multiple-objective problem, we can now
define the fitness vector f(x):

()= (f1 (), f2(X)5ee0s [ (X)) (15)

where f,(x) represent the scalar components of f(x).
The search problem is now restated to the me of seeking for
optimal values for all the functions f,(x) . This is the most

straightforward approach, to transform the objective vector
in a scalar. It is simply accomplished by the traditional
weighted sum, i.e.,
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Chromosome  representation. there are six control
parameters [K,, K;, Ko, B,n] to be determined for an

adaptive optimal control. Now, the chromosome is given as

fZ[KP,K,»,Kd,O(, :B’ X7 TISTZ]’ (17)
r=wifitwt, i=h+thtfs

Wl :[OC, ﬁa Tla Tz]s W2 :[Kpast de n]v

with a real-number representation.

Objective functions: for the general control problem, it is
desirable to optimize a number of different system
performances. Consider a step input R(t) and the output
response Y(t). The following objectives are stated for design.

- Minimizing the maximum overshoot of the output

fi=0V=max Y(t) (18)
- Minimizing the settlting time of the output
fr=8T=t¢t, (19)
such that 0.98R <Y (¢)<1.02R, V¢ 21¢,.
- Minimizing the rise time of the output
3 =RT =t,—-t, (20)

such that Y(#)=0.1R and Y(t,)=0.9R.

4.3 Disturbance Rejection Based on Immune Algorithms

For the solution of the constrained optimization problem,
two real-coded IMs are employed, i.e., IM_1 to minimize the
performance index 7,(k), and IM_2 to maximize the
disturbance rejection constraint a(w,k), as depicted in Fig.
2. Initially, IM_1 is started with the controller parameters
within the search domain as specified by the designer. These
parameters are transferred then to IM_2, which is initialized
with the variable frequency «.

IM 2 maximizes the disturbance rejection constraint
during a fixed number of generations for each individual of
GA 1. Next, if the maximum value will be associated to the
corresponding individual of IM_1. Individuals of IM_1 that
satisfy the disturbance rejection constraint will not be
penalized. In the evaluation of the fitness function of IM 1,
individuals with higher fitness values are selected
automatically and those penalized will not survive the
evolutionary process.

For the implementation of the IM, we used tournament
selection, arithmetic crossover, and mutation [10].

A. Representation

In the immune based representation, the parameters of the

controller were coded in floating - point and concatenated in
an individual for IM_1. For IM_1, an individual consists of
only one gene (frequency ? ). The IMs were initialized
randomly.

B. Fitness Function
An approach using penalty function [10] is employed to
solve the constrained optimization problem.
Let the ITSE performance index be 7, (k). Then the value

of the fitness of each individual of IM_1 k;(=1....... ) is
determined by the evaluation function, denoted by F (k;)
as

Fi(ki) = =(Ln (ki) + P(k;)) (21)

where u; denotes the population size of GA_1. The penalty
function P(k;) is discussed in the following.
Let the disturbance rejection constraint be max( ax(w,k;))> -

The value of the fitness of each individual of
IM_2 @;(j =1,...,lt) is determined by the evaluation function,

denoted by F,(w;) as

B(w;) =o(o,k) (22)
where 1, denotes the population size of IM_2.

The penalty for the individual k; is calculated by means
of the penalty function P(k;) given by

M, if k; is unstable
P(k,)y M, max(@, k,) if max(ou(@,k))"" =y (23)
0 if max( (@, k)™ <y.

If the individual k; does not satisfy the stability test
applied to the characteristic equation of the system, then £;
is an unstable individual and it is penalized with a very large
positive constant M, . Automatically, k; does not survive
the evolutionary process. [ k, satisfies the stability test,

but not the disturbance rejection constraint, then it is an
infeasible individual and is penalized with M - max a(w,k;) ,

where u; is a positive constant to be adjusted. Otherwise,
the individual k; is feasible and is not penalized.

5. Simulations And Discussions

5.1 Simulation of the immune algorithm based PID
Controller on the Thermal Power Plant

888



sine w@

Exeitert —_—
=+1
@1
& Somre
FID Contraller Regulator Exciter
H
1
g.5+h
Stabilizing
Feedback

Fig. 3. Block diagram of power plant under consideration.
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Fig. 5. Response to average values on parameter learning of
immune network. (Pm=0.35, Pc=0.28 to 0.33)
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Fig. 6. Response to average values on parameter learning of
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Fig. 7. Response to average values on parameter learning of
immune network. (Pc=0.29, Pm=0.1 to 0.5)

Simulation results are shown as Fig. 4-7. Fig. 5 represents
response to average values on parameter (Pm=0.35, Pc=0.1

Disturbance Rejection(pc=0.1;pm=0.35)
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Fig. 8. Response to disturbance rejection. (Pc=0.1,

Pm=0.35)

Disturbance rejection(pc=0.29;pm=0.35)

time.

Fig. 9. Response to disturbance rejection. (Pc=0.29,
Pm=0.35)
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Fig. 10. Response to disturbance rejection. (Pc=0.52,t0
Pm=0.35)

0.5) learning of immune network on parameters of the given
power plant model.

Also, Fig. 6 illustrates response to the average of
crossover based learning parameter (Pm=0.5, Pc=0.42 to
0.47) of immune network and Fig. 7 is response to the

average of mutation based learning parameter (Pc=0.29,
Pm=0.1 to 0.5) of immune network. On the other hand, Figs.
8-10 show response to disturbance rejection depending on
parameter variation when crossover and mutation change,
respectively. The table 1 and 2 depict parameter value
depending on permutation variation (Pc).

6. Conclusions

Up to now, the PID controller has been used to operate the
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power plants. However, achieving an optimal PID gain is
very difficult for the steam temperature control loop with
disturbances and without any control experience since the
gain of the PID controller has to be tuned manually by trial
and error the design of the PID controller may not cover a
plant with complex dynamics, such as large dead time,
inverse response, and a highly nonlinear characteristic.

To design an optimal controller that can actually be
operated on a generating system, this paper focuses on
tuning of PID controller with disturbance rejection using
immune algorithm For this purpose, we suggest an immune
algorithm based multiobjective tuning method for the PID
controller. Parameters P, I, and D encoded in antibody are
randomly allocated during selection processes to obtain an
optimal gain for plant.

Table 1. Parameter value depending on permutation variation (Pc).
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May 5 - 8, 2002, Savannah, GA, USA.
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[11] Dong Hwa Kim. “Tuning of 2 - DOF PID controller by

immune algorithm," IEEE international conference on evolutionary

computation, Hawaii, May 12 - 17,

Kp Td | A Ti| a b c d e f 2002. . .

Pc=0.10 | 5.8454 | 1.6732 | 19.865 | 348.57 | 271.61 | 177.66 | 314.14 | 67.779 | 359.92 [12] Dong Hwa Kim, “Auto-tuning
Pc=0.15 | 74582 | 0.05142 | 26412 | 35843 | 26633 | 243.17 | 314.14 | 67.779 | 359.92 of reference model based PID
Pc=020 | 16.201 | 0.02176 | 27.842 | 237.77 | 244.69 | 279.14 | 314.14 | 67.779 | 359.92 controller using immune algorithm,”
Pc=025 | 7.322 | 0.00958 | 18.72 | 300.68 | 258.62 | 224.93 | 314.14 | 67.779 | 359.92 IEEE international conference on
Pc=0.30 21.339 | 20.489 | 33.092 [ 185.22 | 250.58 | 180.56 | 302.75 | 102.6 [ 306.81 evolutionary computation, Hawaii,

Pc=035 | 5.7534 | 15.607 | 26.966 | 305.97 | 235.63 | 211.14 | 300.52 | 77.984 | 281.62 May 12 - 17, 2002.
Pc=040 | 16.026 | 22.067 | 27.995 | 211.55 | 283.94 | 198.09 | 268.08 | 97.794 | 128.67 [13] D. H. Kim, "Intelligent tuning of
Pc=045 | 8.2225 | 4.9614 | 24.8398 | 294.16 | 240.15 | 14832 | 311.11 | 68.524 | 352.67 the two Degrees-of-Freedom
Pc=0.50 | 6.9902 | 29.222 | 38.304 | 28048 | 277.11 | 25382 | 265.11 | 103.00 | 139.72 Proportional-Integral-Derivative
controller on the Distributed control
system for steam temperature of

"
Table 2. Parameter value depending on permutation variation (Pc). ;Efﬁztionaliol‘z stac tli)(i?lnz),n SC}(\I/?IE.
Kb T T " > . ] . T 2-D, No. 2, pp. 7891, 2002.

Pc=0.28 | 75935 | 0.020934 | 32.17 | 23534 | 1628 | 157.75 | 314.14 | 67.779 | 359.92 [14] Reato A. Krohling and Joost
Pc=029 | 11.086 | 17.803 | 29.326 | 218.24 | 301.42 | 198.53 | 298.1 | 14331 | 226.88 P.Rey, ‘“Design of  Optimal
Pc=030 | 21339 | 20489 | 33.092 | 18522 | 250.58 | 180.56 | 302.75 | 102.6 | 306.81 Disturbance Rejection PID
Pc=031 | 10.028 | 21443 | 26.728 | 167.39 | 30341 | 131.84 | 35829 | 275.84 | 318.73 Controllers Using Genetic
Pc=032 | 6.9831 | 0.66115 | 30.341 | 153.25 | 279.98 | 103.38 | 358.37 | 275.84 | 318.73 Algorithms,”TEEE Trans.
Pc=033 | 12288 | 12.176 | 24.555 | 258.26 | 253.67 | 278.87 | 276,81 | 63.038 | 294.76 Evolutionary and computation. Vol. 5,

The object function can be minimized by gain selection
for control, and the variety gain is obtained as shown in
Table 1 and 2. The suggested controller can also be used
effectively in the power plant since the controller needs no
feedforward or cascade loop.
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