• Title/Summary/Keyword: fuzzy supervisor

Search Result 14, Processing Time 0.026 seconds

Real-Coded Genetic Algorithm Based Design and Analysis of an Auto-Tuning Fuzzy Logic PSS

  • Hooshmand, Rahmat-Allah;Ataei, Mohammad
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.178-187
    • /
    • 2007
  • One important issue in power systems is dynamic instability due to loosing balance relation between electrical generation and a varying load demand that justifies the necessity of stabilization. Moreover, Power System Stabilizer (PSS) must have capability of producing appropriate stabilizing signals over a wide range of operating conditions and disturbances. To overcome these drawbacks, this paper proposes a new method for robust design of PSS by using an auto-tuning fuzzy control in combination with Real-Coded Genetic Algorithm (RCGA). This method includes two fuzzy controllers; internal fuzzy controller and supervisor fuzzy controller. The supervisor controller tunes the internal one by on-line applying of nonlinear scaling factors to inputs and outputs. The RCGA-based method is used for off-line training of this supervisor controller. The proposed PSS is tested in three operational conditions; nominal load, heavy load, and in the case of fault occurrence in transmission line. The simulation results are provided to compare the proposed PSS with conventional fuzzy PSS and conventional PSS. By evaluating the simulation results, it is shown that the performance and robustness of proposed PSS in different operating conditions is more acceptable

Fuzzy-supervised nonlinear $H_{\infty}$ controller design for robot manipulator (로봇 매니퓰레이터를 위한 퍼지 감독자 비선형 $H_{\infty}$ 제어기의 설계)

  • 박광성;최윤호;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.143-146
    • /
    • 1997
  • In this paper, we propose a fuzzy-supervised nonlinear H$_{\infty}$ controller which guarantees the robustness and has exact tracking performance for robot manipulator with system parameter uncertainty and exogenous disturbance, The proposed controller which is based on robotic H$_{\infty}$ controller has fuzzy supervisor which decides the optimal control input weighting value through fuzzy making-decision process. Owing to the fuzzy supervisor, The proposed controller can take the optimal control input. Then, we will apply the proposed controller to rigid robot manipulator to verify the performance of our controller.r.

  • PDF

Design of Fault Tolerant Control System for Steam Generator Using Fuzzy Logic

  • Kim, Myung-Ki;Seo, Mi-Ro
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.321-328
    • /
    • 1998
  • A controller and sensor fault tolerant system jot a steam generator is designed with fuzzy logic. A structure of the : proposed fault tolerant redundant system is composed of a supervisor and two fuzzy weighting modulators. A supervisor alternatively checks a controlled and a sensor induced performances to identify Which Part, a controller or a sensor, is faulty. In order to analyze controller induced performance both an error and a charge in error of the system output an chosen as fuzzy variables. The fuzzy logic jot a sensor induced performance uses two variables : a deviation between two sensor outputs and its frequency, Fuzzy weighting modulator generates an output signal compensated for faulty input signal. Simulations show that the : proposed fault tolerant control scheme jot a steam generator regulates welt water level by suppressing fault effect of either controllers or sensors. Therefore through duplicating sensors and controllers with the proposed fault tolerant scheme, both a reliability of a steam generator control and sensor system and that of a power plant increase even mote.

  • PDF

A Navigation Algorithm for Mobile Robots in Unknown Environments (미지 환경에서 이동로봇의 주행 알고리즘)

  • Yi Hyun-Jae;Choi Young-Kiu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.275-284
    • /
    • 2006
  • This paper deals with problems of safe and efficient navigation algorithm for autonomous mobile robots in unknown environments. Since the obstacle avoidance algorithms are very important in mobile robot navigation, two obstacle avoidance algorithms: VFH(vector field histogram) algorithm and a fuzzy algorithm are combined to have optimal performance in various environments. And a upper-level supervisor is to select the proper one from VFH algorithm and the fuzzy algorithm according to the situations the robot faces. Computer simulation results show the effectiveness of the proposed navigation algorithm for autonomous mobile robots.

Robust Control of Variable Hydraulic System using Multiple Fuzzy Rules (다수의 퍼지규칙을 이용한 가변유압시스템의 강건제어)

  • 양경춘;안경관;이수한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.134-134
    • /
    • 2000
  • A switching control using multiple gains in the fuzzy rule is newly proposed for an abruptly changing hydraulic servo system. The proposed scheme employs fuzzy PID control, where modified input parameters are used, and LVQNN(Learning Vector Quantization Neural Network) as a switching controller (supervisor). Simulation and experimental studies have been carried out to validate and illustrate the proposed controller.

  • PDF

An Autonomous Mobile Robot Control Method based on Fuzzy-Artificial Immune Networks and RBFN (퍼지-인공면역망과 RBFN에 의한 자율이동로봇 제어)

  • 오홍민;박진현;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.679-688
    • /
    • 2003
  • In order to navigate the mobile robots safely in unknown environments, many researches have been studied to devise navigational algorithms for the mobile robots. In this paper, we propose a navigational algorithm that consists of an obstacle-avoidance behavior module, a goal-approach behavior module and a radial basis function network(RBFN) supervisor. In the obstacle-avoidance behavior module and goal-approach behavior module, the fuzzy-artificial immune networks are used to select a proper steering angle which makes the autonomous mobile robot(AMR) avoid obstacles and approach the given goal. The RBFN supervisor is employed to combine the obstacle-avoidance behavior and goal-approach behavior for reliable and smooth motion. The outputs of the RBFN are proper combinational weights for the behavior modules and velocity to steer the AMR appropriately. Some simulations and experiments have been conducted to confirm the validity of the proposed navigational algorithm.

Fuzzy Control of Dynamic systems Using LIBL(Linguistic Instruction Based Learning) (LIBL을 이용한 다이나믹 시스템의 퍼지제어)

  • 조중선;박계각;정경욱;박래석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.139-144
    • /
    • 1995
  • LIBL(Linguistic Instruction Based Leaning) is an effective learning algorithm for fuzzy controller which interpretes and uses natural language of human The possibiliy of the LIBL algorithm to the fuzzy control of dynamic systems is investigated in this paper. Rise time, percent overshoot, and steady stste are proposed as suitable meaning elements for dynamic systems. A supervisor is able to give "higer-level linguistic instruction" to the learning algorithm through these three meaning elements Simulation results for a DC servo motor show the validity of the proposed algorithm.

  • PDF

Seismic Response Control of Cable-Stayed Bridge using Fuzzy Supervisory Control Technique (퍼지관리제어기법을 이용한 사장교의 지진응답제어)

  • Park, Kwan-Soon;Koh, Hyun-Moo;Ok, Seung-Yong;Seo, Chung-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.51-62
    • /
    • 2004
  • Fuzzy supervisory control technique for the seismic response control of cable-stayed bridges subject to earthquakes is studied. The proposed technique is a hybrid control method, which adopts a hierarchical structure consisting of several sub-controllers and a fuzzy supervisor. Sub-controllers are independently designed to reduced the responses to be controlled of a cable-stayed bridge, and a fuzzy supervisor achieves improved seismic control performance by tuning the pre-designed sub-controllers. It is realized by converting static gains of the sub-controllers into time-varying dynamic gains through the fuzzy inference mechanism. To evaluate the feasibility of the proposed technique, the benchmark control problem of cable-stayed bridge proposed by Dyke et al. is adopted. The control variables for the seismic response control of the cable-stayed bridge are determined to be t도 shear forces and bending moments at the base of the towers, the longitudinal displacements at the top of the towers, the relative displacements between the deck and the tower, and the tensions in the stay cables. Comparative results between the fuzzy supervisory controller and LQG controller demonstrate the effectiveness of the proposed control technique.

Depth Controller Design using Fuzzy Gain Scheduling Method of a Autonomous Underwater Vehicle - Verification by HILS (퍼지 이득 스케쥴링 기법을 이용한 무인 잠수정의 심도제어기 설계 - HILS 검증)

  • Hwang, Jong-Hyon;Park, Sewon;Kim, Moon-Hwan;Lee, Sang-Young;Hong, Sung Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.791-796
    • /
    • 2013
  • This paper proposes a fuzzy logic gain scheduling method for depth controller of the AUV (Autonomous Underwater Vehicle). Gains of depth controller are calculated by using multi-loop root locus technique. Fuzzy logic based gain scheduling approach is used to modify multi-loop gains as control condition. It is illustrated by simulations that the proposed fuzzy logic gain scheduling method yields smaller rising time and overshoot compared to the fixed-gain controller. Finally, being implemented on real hardwares, all the proposed algorithms are validated with integrations of hardware and software altogether by HILS.

A Study on the Cognitive Process of Supervisory control in Human-Computer Interaction (인간-컴퓨터 작업에서 감시체계의 상황인지과정에 관한 연구)

  • 오영진;이근희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.16 no.27
    • /
    • pp.105-111
    • /
    • 1993
  • Human works shift its roll from physical condition to the system supervisory control task In this paper safety-presentation configuration is discussed instead of well-known fault-warning configuration. Of paticular interest was the personal factor which include the cognitive process. Through a performance between each person information processing(d') and decision process($\beta$) was pointed out to explain the sensitivity of personal cognitive process. Impact of uncertainty effect the supervisor having doubt situations. These facts are released by the use of flat fuzzy number of $\beta$ and its learning rate R.

  • PDF