• Title/Summary/Keyword: fuzzy static output feedback

Search Result 10, Processing Time 0.027 seconds

Static Output Feedback Control Synthesis for Discrete-time T-S Fuzzy Systems

  • Dong, Jiuxiang;Yang, Guang-Hong
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.349-354
    • /
    • 2007
  • This paper considers the problem of designing static output feedback controllers for nonlinear systems represented by Takagi-Sugeno (T-S) fuzzy models. Based on linear matrix inequality technique, a new method is developed for designing fuzzy stabilizing controllers via static output feedback. Furthermore, the result is also extended to $H_{\infty}$ control. Examples are given to illustrate the effectiveness of the proposed methods.

Static Output Feedback Control for Continuous T-S Fuzzy Systems (연속시간 T-S 퍼지 시스템에 대한 정적 출력궤환 제어)

  • Jeung, Eun Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.560-564
    • /
    • 2015
  • This paper presents a design method of a static output feedback controller for continuous T-S fuzzy systems via parallel distributed compensation (PDC). The existence condition of a set of static output feedback gains is represented in terms of linear matrix inequalities (LMIs). The sufficient condition presented here does not need any transformation matrices and equality constraints and is less conservative than the previous results seen in [20].

Non-PDC Static Output Feedback Control for T-S Fuzzy Systems (T-S 퍼지 시스템에 대한 비병렬분산보상 정적 출력궤환 제어)

  • Jeung, Eun Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.496-501
    • /
    • 2016
  • This paper presents a design method of non-parallel distributed compensation (non-PDC) static output feedback controller for continuous- and discrete-time T-S fuzzy systems. The existence condition of static output feedback control law is represented in terms of linear matrix inequalities (LMIs). The proposed sufficient stabilizing condition does not need any transformation matrices and equality constraints and is less conservative than the previous result of [21].

Static Output Feedback Robust $H_{\infty}$ Fuzzy Control of Nonlinear Systems with Time-Varying Delay (시변 지연이 있는 비선형 시스템에 대한 $H_{\infty}$ 퍼지 강인제어기 설계)

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.379-381
    • /
    • 2004
  • In this paper, a robust $H_{\infty}$ stabilization problem to a uncertain fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-varying delayed state. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H_{\infty}$ controllers are given in terms of linear matrix inequalities.

  • PDF

Robust H${\infty}$Fuzzy Control of Nonlinear Systems with Time-Varying Delay via Static Output Feedback

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1486-1491
    • /
    • 2005
  • In this paper, a robust H${\infty}$ stabilization problem to a uncertain fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent uncertain nonlinear systems with time-varying delayed state, which is a continuous-time or discrete-time system. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust H${\infty}$controllers are given in terms of linear matrix inequalities.

  • PDF

Static Output Feedback Robust $H\infty$ Fuzzy Control of Discrete-Time Nonlinear Systems with Time-Varying Delay (시변 지연 이산 시간 비선형 시스템에 대한 정적 출력 궤환 $H\infty$ 퍼지 강인 제어기 설계)

  • Kim Taek Ryong;Park Jin Bae;Joo Young Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.149-152
    • /
    • 2005
  • In this paper, a robust $H\infty$ stabilization problem to a uncertain discrete-time fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi -Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-varying delayed state. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H\infty$ controllers are given in terms of linear matrix inequalities.

  • PDF

Robust H∞ Fuzzy Control for Discrete-Time Nonlinear Systems with Time-Delay (시간 지연을 갖는 이산 시간 비선형 시스템에 대한 H∞ 퍼지 강인 제어기 설계)

  • Kim Taek Ryong;Park Jin Bae;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.324-329
    • /
    • 2005
  • In this paper, a robust $H\infty$ stabilization problem to a uncertain discrete-time nonlinear systems with time-delay via fuzzy static output feedback is investigated. The Takagj-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear system with time-delayed state. Then, the parallel distributed compensation technique is used for designing of the robust fuzzy controller. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H\infty$ controllers are given in terms of linear matrix inequalities via similarity transform and congruence transform technique. We have shown the effectiveness and feasibility of the proposed method through the simulation.

Dynamic State Feedback Controller Synthesis for Fuzzy Models (퍼지 모델을 위한 동적 상태 피드백 제어기 설계)

  • Chang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.528-530
    • /
    • 1999
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex single input single output nonlinear systems. Firstly, the nonlinear system is represented by well-known Takagai-Sugeno (TS) fuzzy model and the global controller is constructed by compensating each linear model in the rule of TS fuzzy model. The design of conventional TS fuzzy-model-based controller usually is composed of two processes. One is to determine static state feedback gain of each local model and the other is to validate the stability of the designed fuzzy controller. In this paper, we propose an alternative of the design of TS fuzzy-model-based controller. The design scheme is based on the extension of conventional optimal control theory to the design of TS fuzzy-model-based controller. By using the proposed method the design and stability analysis of the TS fuzzy model-based controller is reduced to the problem of finding the solution of a set of algebraic Riccati equations. And we use the recently developed interior point method to find the solution of AREs, where AREs are recast as the LMI formulation. One simulation example is given to show the effectiveness and feasibility of the proposed fuzzy controller design method.

  • PDF

Design of the Robust Controller for the Discrete-Time Nonlinear System with Time-Delay Via Fuzzy Approach (퍼지 기법을 이용한 시간 지연을 가지는 이산시간 비선형 시스템에 대한 강인 제어기 설계)

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2723-2725
    • /
    • 2005
  • In this paper, a robust $H{\infty}$ stabilization problem to a uncertain discrete-time nonlinear systems with time-delay via fuzzy static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-delayed state. Then parallel distributed compensation technique is used for designing of the robust fuzzy controller. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H{\infty}$ controllers are given in terms of linear matrix inequalities via similarity transform and congruence transform technique.

  • PDF

Stability Analysis ant Static Output Feedback Control for switched system (스위칭 시스템을 위한 안정도 분석 및 출력 궤환 제어)

  • Kim, Joo-Won;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.122-125
    • /
    • 2002
  • This paper proposes a stability condition in switched system and then, introduce design method of fuzzy-model-based controller which guarantees the stability. Takagi-Sugeno(75) fuzzy model is employed to design a switching-type fuzzy-model-based ,controller. Furthermore, it is proposed that the design method stabilizing continuous and discrete-time 75 fuzzy model respectively. Each controller in each subspace stabilize the subsystem respectively. In order to guarantee the stability of the global system, it is required to guarantee the stability condition in boundaries with subsystems. The condition which guarantees the stability in boundaries is presented in this paper. Inverted Pendulum system is employed to execute computer simulations. In this computer simulation, the performance of the proposed controller is verified by the control result.