• Title/Summary/Keyword: fuzzy stability

Search Result 620, Processing Time 0.03 seconds

Fuzzy Applications in a Multi-Machine Power System Stabilizer

  • Sambariya, D.K.;Gupta, Rajeev
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.503-510
    • /
    • 2010
  • This paper proposes the use of fuzzy applications to a 4-machine and 10-bus system to check stability in open conditions. Fuzzy controllers and the excitation of a synchronous generator are added. Power system stabilizers (PSSs) are added to the excitation system to enhance damping during low frequency oscillations. A fuzzy logic power system stabilizer (PSS) for stability enhancement of a multi-machine power system is also presented. To attain stability enhancement, speed deviation ($\Delta\omega$) and acceleration ($\Delta\varpi$) of the Kota Thermal synchronous generator rotor are taken as inputs to the fuzzy logic controller. These variables have significant effects on the damping of generator shaft mechanical oscillations. The stabilizing signals are computed using fuzzy membership functions that are dependent on these variables. The performance of the fuzzy logic PSS is compared with the open power system, after which the simulations are tested under different operating conditions and changes in reference voltage. The simulation results are quite encouraging and satisfactory. Similarly, the system is tested for the different defuzzification methods, and based on the results, the centroid method elicits the best possible system response.

Takagi-Sugeno Fuzzy Sampled-data Filter for Nonlinear System (비선형 시스템을 위한 Takagi-Sugeno 퍼지 샘플치필터)

  • Kim, Ho Jun;Park, Jin Bae;Joo, Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.349-354
    • /
    • 2015
  • This paper presents the stability conditions of the Takagi-Sugeno (T-S) fuzzy sampled-data filter. The error system between the T-S fuzzy system and fuzzy filter is presented. In the sense of the Lyapunov stability analysis, the stability conditions are given, which can be represented in terms of linear matrix inequalities (LMIs). The proposed stability conditions utilize the different approach from the conventional methods, and have better performance than that of the conventional ones. The simulation example is given to show the effectiveness of the proposed method.

Consideration to the Stability of FLC using The Circle Criterion (Circle Criterion을 이용한 FLC의 안정도에 대한 고찰)

  • Lee, Kyoung-Woong;Choi, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.525-529
    • /
    • 2009
  • Most of FLC received input data from error e and change-of-error e' with no relation with system complexity. Basic scheme follows typical PD and PI or PID Controller and that has been developed through fixed ME In this paper, We studied the relationship between MF and system response and system response through changing Fuzzy variable of consequence MF and propose the simple FLC using this relationship. The response of FLC is changed according to the width of Fuzzy variable of consequence MF. As changing the Fuzzy variable of consequence MF shows various nonlinear characteristic, we studied the relation between response and MF using analytical method. We designed the effective FLC using three-variable MF and nine rules and took simulation for verification. In this study, we propose the method to design system with FLC in stability point which is an impotent characteristic of designing system. The circle criterion which is adapted to analysis the nonlinear system is put to use for proposed method. Since SISO FLC has a time-invariant and odd characteristic we can use the critical point not disk which is generally used to determine the stability in the circle criterion, to determine the stability. Using this, we can get the maximum critical point plot of SISO FLC with changing the consequence fuzzy variables. The predetermined critical point plot of FLC can be used to decide the region of the system to be stable. This method is effectively used to design the SISO FLC.

FUZZY STABILITY OF A CUBIC-QUARTIC FUNCTIONAL EQUATION: A FIXED POINT APPROACH

  • Jang, Sun-Young;Park, Choon-Kil;Shin, Dong-Yun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.491-503
    • /
    • 2011
  • Using the fixed point method, we prove the generalized Hyers-Ulam stability of the following cubic-quartic functional equation (0.1) f(2x + y) + f(2x - y) = 3f(x + y) + f(-x - y) + 3f(x - y) + f(y - x) + 18f(x) + 6f(-x) - 3f(y) - 3f(-y) in fuzzy Banach spaces.

FUZZY STABILITY OF A CUBIC-QUADRATIC FUNCTIONAL EQUATION: A FIXED POINT APPROACH

  • Park, Choonkil;Lee, Sang Hoon;Lee, Sang Hyup
    • Korean Journal of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.315-330
    • /
    • 2009
  • Using the fixed point method, we prove the generalized Hyers-Ulam stability of the following cubic-quadratic functional equation $$(0.1)\;\frac{1}{2}(f(2x+y)+f(2x-y)-f(-2x-y)-f(y- 2x))\\{\hspace{35}}=2f(x+y)+2f(x-y)+4f(x)-8f(-x)-2f(y)-2f(-y)$$ in fuzzy Banach spaces.

  • PDF

A New Approach to Stability Analysis of Singleton-type Fuzzy Control Systems (싱글톤 퍼지 제어 시스템의 새로운 안정도 해석법)

  • 김은태;이희진;이상형;박민용
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.788-791
    • /
    • 1999
  • In recent years, many studies have been conducted on fuzzy control since it can surpass the conventional control in several respects. In this paper, numerical stability analysis methodology for the singleton-type linguistic fuzzy control systems is proposed. The Proposed stability analysis is not the analytical method but the numerical method using the convex optimization technique of Quadratic Programming (QP) and Linear Matrix Inequalities (LMI).

  • PDF

A FIXED POINT APPROACH TO STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES

  • Kim, Chang Il;Park, Se Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.3
    • /
    • pp.453-464
    • /
    • 2016
  • In this paper, we investigate the solution of the following functional inequality $$N(f(x)+f(y)+f(z),t){\geq}N(f(x+y+z),mt)$$ for some fixed real number m with $\frac{1}{3}$ < m ${\leq}$ 1 and using the fixed point method, we prove the generalized Hyers-Ulam stability for it in fuzzy Banach spaces.

Multirate Digital Control for Fuzzy Systems: LMI-Based Design and Stability Analysis

  • Kim Do-Wan;Park Jin-Bae;Joo Young-Hoon;Kim Sung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.506-515
    • /
    • 2006
  • This paper studies an intelligent digital control for nonlinear systems with multirate sampling. It is worth noting that the multirate control design is addressed for a given nonlinear system represented by Takagi-Sugeno (T-S) fuzzy models. The main features of the proposed method are that i) it is provided that the sufficient conditions for stabilization of the discrete-time T-S fuzzy system in the sense of Lyapunov stability criterion, which is can be formulated in the linear matrix inequalities (LMIs); and ii) the stability properties of the trivial solution of the digital control system can be deduced from that of the solution of its discretized versions. An example is provided for showing the feasibility of the proposed method.