THE HYERS-ULAM STABILITY OF CUBIC FUNCTRIONAL EQUATIONS IN FUZZY BANACH SPACES

Yong Sik Yun and Chang Il Kim*

Abstract

In this paper, we consider the following cubic functional equation $f(3 x+y)+f(3 x-y)=f(x+2 y)+2 f(x-y)+2 f(3 x)-3 f(x)-6 f(y)$ and prove the generalized Hyers-Ulam stability for it in fuzzy normed spaces.

1. Introduction

In 1940, Ulam [13] proposed the following stability problem :
"Let G_{1} be a group and G_{2} a metric group with the metric d. Given a constant $\delta>0$, does there exists a constant $c>0$ such that if a mapping $f: G_{1} \longrightarrow G_{2}$ satisfies $d(f(x y), f(x) f(y))<c$ for all $x, y \in G_{1}$, then there exists a unique homomorphism $h: G_{1} \longrightarrow G_{2}$ such that $d(f(x), h(x))<\delta$ for all $x \in G_{1}$?"

In 1941, Hyers [5] answered this problem under the assumption that the groups are Banach spaces. Aoki [1] and Rassias [11] generalized the result of Hyers. Rassias [11] solved the generalized Hyers-Ulam stability of the functional inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for some $\epsilon \geq 0$, a real number p with $p<1$ and all $x, y \in X$, where $f: X \longrightarrow Y$ is a function between Banach spaces. The paper of Rassias [11] has provided a lot of influence in the development of what we call the generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. A generalization of the Rassias theorem was obtained by Gǎvruta [4] by replacing the

Received March 6, 2014; Accepted March 24, 2014.
2010 Mathematics Subject Classification. 39B55, 39B52.
Key words and phrases. Generalized Hyers-Ulam stability, cubic functional equation, fuzzy normed space.

* Corresponding author.
unbounded Cauchy difference by a general control function in the spirit of Rassis approach. In 2003, Bag and Samanta [2] modified the definition of Cheng and Mordeson [3] by removing a regular condition.

In this paper, we consider the fuzzy version stability problem in the fuzzy normed linear space setting. The concept of fuzzy norm on a linear space was introduced by Katsaras [6] in 1984, which was later on studied, following Cheng and Mordeson [3], to give a new definition of a fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [7].

Rassias [10], Park and Jung [9] introduced the following cubic functional equations

$$
\begin{equation*}
f(x+2 y)+3 f(x)=3 f(x+y)+f(x-y)+6 f(y) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(3 x+y)+f(3 x-y)=3 f(x+y)+3 f(x-y)+48 f(x) \tag{2}
\end{equation*}
$$

and investigated its general solution and the generalized Hyers-Ulam-Rassias stability respectively. It is easy to see that the function $f(x)=a x^{3}$ is a solution of the functional equation (1) and (2), which explains why they are called a cubic functional equation.

In this paper, we consider the the following functional equation

$$
\begin{equation*}
f(3 x+y)+f(3 x-y)=f(x+2 y)+2 f(x-y)+51 f(x)-6 f(y) \tag{3}
\end{equation*}
$$

which is the difference of (1) and (2) and

$$
\begin{equation*}
f(3 x+y)+f(3 x-y)=f(x+2 y)+2 f(x-y)+2 f(3 x)-3 f(x)-6 f(y) \tag{4}
\end{equation*}
$$

Moreover we prove the generalized Hyers-Ulam stability for (4) in fuzzy normed spaces. Mirmostafaee and Moslehian [8] proved the stability of a cubic functional equation in fuzzy normed spaces.

Definition 1. Let X be a linear space. A function $N: X \times \mathbb{R} \longrightarrow[0,1]$ is called a fuzzy norm on X if for all $x, y \in X$ and all $s, t \in \mathbb{R}$,
(N1) $N(x, t)=0$ for $t \leq 0$;
(N2) $x=0$ if and only if $N(x, t)=1$ for all $t>0$;
(N3) $N=(c x, t)=N\left(x, \frac{t}{|c|}\right)$ if $c \neq 0$;
(N4) $N=(x+y, s+t) \geq \min \{N(x, s), \quad N(y, t)\}$;
(N5) $N(x, \cdot)$ is a non-decreasing function of \mathbb{R} and $\lim _{t \rightarrow \infty} N(x, t)=1$;
(N6) for $x \neq 0, N(x, \cdot)$ is continuous on \mathbb{R}.
In this case, the pair (X, N) is called a fuzzy normed space.
Definition 2. Let (X, N) be a fuzzy normed space. A sequence $\left\{x_{n}\right\}$ in X is said to be convergent if there exists an $x \in X$ such that $\lim _{t \rightarrow \infty} N\left(x_{n}-x, t\right)=1$. In this case, x is called the limit of the sequence $\left\{x_{n}\right\}$ in X and one denotes it by $N-\lim _{t \rightarrow \infty} x_{n}=x$.

Definition 3. Let (X, N) be a fuzzy normed space. A sequence $\left\{x_{n}\right\}$ in X is said to be Cauchy if for any $\epsilon>0$, there is an $m \in \mathbb{N}$ such that for any $n \geq m$ and any positive integer $p, N\left(x_{n+p}-x_{n}, t\right)>1-\epsilon$ for all $t>0$.

It is well known that every convergent sequence in a fuzzy normed space is Cauchy. A fuzzy normed space is said to be complete if each Cauchy sequence in it is convergent and a complete fuzzy normed space is called a fuzzy Banach space.

Throughtout this paper, X is a linear space, (Y, N) is a fuzzy Banach space, and $\left(Z, N^{\prime}\right)$ is a fuzzy normed space.

2. Solutions of (4)

In this section, we investigate solutions of (3) and (4) between X and Y. And then, in Corollary 2.2, it can be concluded that $f: X \longrightarrow Y$ satisfies (3) if and only if f satisfies (4). We start with the following theorem.
Theorem 2.1. Let $f: X \longrightarrow Y$ be a mapping. Then f satisfies (4) if and only if f is cubic.

Proof. Clearly, $f(0)=0$. Letting $x=0$ and $y=x$ in (4), we have

$$
\begin{equation*}
7 f(x)-f(-x)-f(2 x)=0 \tag{5}
\end{equation*}
$$

for all $x \in X$ and letting $x=0$ and $y=-x$ in (4), we have

$$
\begin{equation*}
7 f(-x)-f(x)-f(-2 x)=0 \tag{6}
\end{equation*}
$$

for all $x \in X$. Letting $y=x$ in (4), we have

$$
\begin{equation*}
f(4 x)+f(2 x)-3 f(3 x)+9 f(x)=0 \tag{7}
\end{equation*}
$$

for all $x \in X$. Letting $y=-x$ in (4), we have

$$
\begin{equation*}
f(4 x)-f(2 x)-2 f(3 x)+3 f(x)+5 f(-x)=0 \tag{8}
\end{equation*}
$$

for all $x \in X$ and letting $x=0$ and $y=2 x$ in (4), we have

$$
\begin{equation*}
7 f(2 x)-f(-2 x)-f(4 x)=0 \tag{9}
\end{equation*}
$$

for all $x \in X$. Calulating $\{(6)+2 \times(7)-3 \times(8)-8 \times(5)-(9)\}$, we have

$$
\begin{equation*}
f(2 x)=2^{3} f(x) \tag{10}
\end{equation*}
$$

for all $x \in X$. By (7) and (10), we have

$$
\begin{equation*}
f(3 x)=3^{3} f(x) \tag{11}
\end{equation*}
$$

for all $x \in X$. By (5) and (10),

$$
\begin{equation*}
f(x)=-f(-x) \tag{12}
\end{equation*}
$$

for all $x \in X$. Replacing y by $3 y$ in (4), we have

$$
\begin{align*}
& 27 f(x+y)+27 f(x-y) \\
= & f(x+6 y)+2 f(x-3 y)+2 f(3 x)-3 f(x)-6 f(3 y) \tag{13}
\end{align*}
$$

for all $x, y \in X$. Interchanging x and y in (13), by (12), we have

$$
\begin{align*}
& 27 f(x+y)-27 f(x-y) \\
= & f(6 x+y)-2 f(3 x-y)+2 f(3 y)-3 f(y)-6 f(3 x) \tag{14}
\end{align*}
$$

for all $x, y \in X$. Relpacing y by $2 y$ in (14), by (10), we have

$$
\begin{align*}
& 27 f(x+2 y)-27 f(x-2 y) \\
= & 8 f(3 x+y)-2 f(3 x-2 y)+16 f(3 y)-24 f(y)-6 f(3 x) \tag{15}
\end{align*}
$$

for all $x, y \in X$. Relpacing y by $-y$ in (4), by (12), we have

$$
\begin{align*}
& f(3 x+y)+f(3 x-y) \\
= & f(x-2 y)+2 f(x+y)+2 f(3 x)-3 f(x)+6 f(y) \tag{16}
\end{align*}
$$

for all $x, y \in X$. By (4) and (16), we have

$$
\begin{equation*}
f(x+2 y)-f(x-2 y)-2 f(x+y)+2 f(x-y)-12 f(y)=0 \tag{17}
\end{equation*}
$$

for all $x, y \in X$. Letting $y=-y$ in (15), by (12), we have

$$
\begin{align*}
& 27 f(x-2 y)-27 f(x+2 y) \\
= & 8 f(3 x-y)-2 f(3 x+2 y)-16 f(3 y)+24 f(y)-6 f(3 x) \tag{18}
\end{align*}
$$

for all $x, y \in X$. By (15) and (18), we have

$$
\begin{equation*}
8[f(3 x+y)+f(3 x-y)]-2[f(3 x+2 y)+f(3 x-2 y)]-12 f(3 x)=0 \tag{19}
\end{equation*}
$$

for all $x, y \in X$. Replacing $3 x$ by x in (19), by (11), we have

$$
f(x+2 y)+f(x-2 y)=4 f(x+y)+4 f(x-y)-6 f(x)
$$

for all $x, y \in X$ and so f is a cubic, quadratic and additive mapping([14]). Since $f(2 x)=2^{3} f(x)$ for all $x \in X, f$ is cubic. The converse is trivial.

We remark that if f satisfies (4), then $f(3 x)=27 f(x)$ for all $x \in X$ and that if f satisfies (4), then f satisfies (3). Similarly, if f satisfies (3), then f satisfies (4). Hence we have the following corollary
Corollary 2.2. Let $f: X \longrightarrow Y$ be a mapping. Then the following are equivalent
(1) f satisfies (3),
(2) f satisfies (4), and
(3) f is cubic.

3. The Generalized Hyers-Ulam stability for (4)

In this section, we prove the generalized Hyers-Ulam stability of functional equation (4) in fuzzy normed spaces.

For any mapping $f: X \longrightarrow Y$, we define the difference operator $D f$: $X^{2} \longrightarrow Y$ by
$D f(x, y)=f(3 x+y)+f(3 x-y)-f(x+2 y)-2 f(x-y)-2 f(3 x)+3 f(x)+6 f(y)$ for all $x, y \in X$.

Theorem 3.1. Let $\phi: X^{2} \longrightarrow Z$ be a function and r a real number such that $0<|r|<2^{3}$

$$
\begin{equation*}
N^{\prime}(\phi(2 x, 2 y), t) \geq N^{\prime}(r \phi(x, y), t) \tag{20}
\end{equation*}
$$

for all $x, y \in X$ all $t>0$. Let $f: X \longrightarrow Y$ be a mapping such that $f(0)=0$ and

$$
\begin{equation*}
N(D f(x, y), t) \geq N^{\prime}(\phi(x, y), t) \tag{21}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Then there exists a unique cubic mapping C : $X \longrightarrow Y$ satisfying (4) and the inequality

$$
\begin{equation*}
N(f(x)-C(x), t) \geq \Phi\left(x, 6\left(2^{3}-|r|\right) t\right) \tag{22}
\end{equation*}
$$

holds for all $x \in X$ and all $t>0$, where

$$
\begin{aligned}
\Phi(x, t)= & \min \left\{N^{\prime}\left(\phi(0,-x), \frac{t}{15}\right), N^{\prime}\left(\phi(x, x), \frac{t}{15}\right),\right. \\
& \left.N^{\prime}\left(\phi(x,-x), \frac{t}{15}\right), N^{\prime}\left(\phi(0, x), \frac{t}{15}\right), N^{\prime}\left(\phi(0,2 x), \frac{t}{15}\right)\right\} .
\end{aligned}
$$

Proof. By (20) and (N3), we have

$$
\begin{equation*}
N^{\prime}\left(\phi\left(2^{n} x, 2^{n} y\right), t\right) \geq N^{\prime}\left(r^{n} \phi(x, y), t\right)=N^{\prime}\left(\phi(x, y), \frac{t}{|r|^{n}}\right) \tag{23}
\end{equation*}
$$

for all $x, y \in X$ and all $t>0$ and so by (23), we have

$$
\begin{equation*}
N^{\prime}\left(\phi\left(2^{n} x, 2^{n} y\right),|r|^{n} t\right) \geq N^{\prime}(\phi(x, y), t) \tag{24}
\end{equation*}
$$

for all $x, y \in X$ and all $t>0$. By (21), we have

$$
\begin{aligned}
& N(6 f(2 x)-48 f(x), t) \\
= & N(D f(0,-x)+2 D f(x, x)-3 D f(x,-x)-8 D f(0, x)-D f(0,2 x), t) \\
\geq & \min \left\{N\left(D f(0,-x), \frac{t}{15}\right), N\left(2 D f(x, x), \frac{2 t}{15}\right), N\left(3 D f(x,-x), \frac{3 t}{15}\right),\right. \\
& \left.N\left(8 D f(0, x), \frac{8 t}{15}\right), N\left(D f(0,2 x), \frac{t}{15}\right)\right\} \geq \Phi(x, t)
\end{aligned}
$$

for all $x \in X$ and all $t>0$. Hence, by (21) and (N3), we have

$$
\begin{equation*}
N\left(f(x)-\frac{f(2 x)}{2^{3}}, \frac{t}{6 \times 2^{3}}\right) \geq \Phi(x, t) \tag{25}
\end{equation*}
$$

for all $x \in X$ and all $t>0$. By (24), (25), and (N3), we have

$$
\begin{equation*}
N\left(\frac{f\left(2^{n} x\right)}{2^{3 n}}-\frac{f\left(2^{n+1} x\right)}{2^{3(n+1)}}, \frac{|r|^{n} t}{6 \times 2^{3(n+1)}}\right) \geq \Phi\left(2^{n} x,|r|^{n} t\right) \geq \Phi(x, t) \tag{26}
\end{equation*}
$$

for all $x \in X$, all $t>0$ and all positive integer n. Hence by (26) and (N4), for any $x \in X$, we have

$$
\begin{align*}
& N\left(f(x)-\frac{f\left(2^{n} x\right)}{2^{3 n}}, \sum_{i=0}^{n-1} \frac{|r|^{i} t}{6 \times 2^{3(i+1)}}\right) \\
= & N\left(\sum_{i=0}^{n-1}\left[\frac{f\left(2^{i} x\right)}{2^{3 i}}-\frac{f\left(2^{i+1} x\right)}{2^{3(i+1)}}\right], \sum_{i=0}^{n-1} \frac{|r|^{i} t}{6 \times 2^{3(i+1)}}\right) \tag{27}\\
\geq & \min \left\{\left.N\left(\frac{f\left(2^{i} x\right)}{2^{3 i}}-\frac{f\left(2^{i+1} x\right)}{2^{3(i+1)}}, \frac{|r|^{i} t}{6 \times 2^{3(i+1)}}\right) \right\rvert\, 0 \leq i \leq n-1\right\} \geq \Phi(x, t)
\end{align*}
$$

for all $x \in X$, all $t>0$ and all positive integer n. So for any $x \in X$, we have

$$
\begin{align*}
& N\left(\frac{f\left(2^{m} x\right)}{2^{3 m}}-\frac{f\left(2^{m+p} x\right)}{2^{3(m+p)}}, \sum_{i=m}^{m+p-1} \frac{|r|^{i} t}{6 \times 2^{3(i+1)}}\right) \\
= & N\left(\sum_{i=m}^{m+p-1}\left[\frac{f\left(2^{i} x\right)}{2^{3 i}}-\frac{f\left(2^{i+1} x\right)}{2^{3(i+1)}}\right], \sum_{i=m}^{m+p-1} \frac{|r|^{i} t}{6 \times 2^{3(i+1)}}\right) \tag{28}\\
\geq & \Phi(x, t)
\end{align*}
$$

for all $x \in X$, all $t>0$, all non-negative integer m and all positive integer p. Thus, by (28) and (N3), for any $x \in X$, we have

$$
\begin{equation*}
N\left(\frac{f\left(2^{m} x\right)}{2^{3 m}}-\frac{f\left(2^{m+p} x\right)}{2^{3(m+p)}}, t\right) \geq \Phi\left(x, \frac{t}{\left.\sum_{i=m}^{m+p-1} \frac{|r|^{i}}{6 \times 2^{3(i+1)}}\right)}\right) \tag{29}
\end{equation*}
$$

for all $x \in X$, all $t>0$, all non-negative integer m and all positive integer p. Since $\sum_{i=0}^{\infty} \frac{|r|^{i}}{2^{3(i+1)}}$ is convergent, $\lim _{m \rightarrow \infty} \frac{t}{\sum_{i=m}^{m+p-1} \frac{|r|^{i}}{2^{3(i+1)}}}=\infty$. Since $\lim _{t \rightarrow \infty} \Phi(x, t)=1,\left\{\frac{f\left(2^{m} x\right)}{2^{3 m}}\right\}$ is a Cauchy sequence in (Y, N). Since (Y, N) is a fuzzy Banach space, there is a mapping $C: X \longrightarrow Y$ defined by

$$
\begin{align*}
& C(x)=N-\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{3 n}} \text { or } \tag{30}\\
& \lim _{n \rightarrow \infty} N\left(\frac{f\left(2^{n} x\right)}{2^{3 n}}-C(x), t\right)=1, t>0
\end{align*}
$$

for all $x \in X$. Moreover by (29), we have

$$
\begin{equation*}
N\left(f(x)-\frac{f\left(2^{n} x\right)}{2^{3 n}}, t\right) \geq \Phi\left(x, \frac{t}{\sum_{i=0}^{n-1} \frac{|r|^{i}}{6 \times 2^{3(i+1)}}}\right) \tag{31}
\end{equation*}
$$

for all $x \in X$, all $t>0$ and all positive integer n. Let ϵ be a real number with $0<\epsilon<1$. Then, by (30), (31), and (N4), we have

$$
\begin{align*}
& N(f(x)-C(x), t) \\
\geq & \min \left\{N\left(f(x)-\frac{f\left(2^{n} x\right)}{2^{3 n}},(1-\epsilon) t\right), N\left(\frac{f\left(2^{n} x\right)}{2^{3 n}}-C(x), \epsilon t\right)\right\} \tag{32}\\
\geq & \Phi\left(x, \frac{(1-\epsilon) t}{\left.\sum_{i=0}^{n-1} \frac{|r|^{i}}{6 \times 2^{3(i+1)}}\right)}\right) \geq \Phi\left(x, 6(1-\epsilon)\left(2^{3}-|r|\right) t\right)
\end{align*}
$$

for sufficiently large positive integer n, all $x \in X$, and all $t>0$. Since $N(x, \cdot)$ is continuous on \mathbb{R}, we get

$$
\begin{equation*}
N(f(x)-C(x), t) \geq \Phi\left(x, 6\left(2^{3}-|r|\right) t\right) \tag{33}
\end{equation*}
$$

for all $x \in X$ and all $t>0$ and so we have (22). By (21) and (N3), we have

$$
\begin{equation*}
N\left(\frac{D f\left(2^{n} x, 2^{n} y\right)}{2^{3 n}}, t\right) \geq N^{\prime}\left(\phi\left(2^{n} x, 2^{n} y\right), \geq N^{\prime}\left(\phi(x, y), \frac{2^{3 n}}{|r|^{n}} t\right)\right. \tag{34}
\end{equation*}
$$

for all $x, y \in X$ and all $t>0$. Since $\lim _{n \rightarrow \infty} N^{\prime}\left(\phi(x, y), \frac{2^{3 n}}{|r|^{n}} t\right)=1$, by (30), (34), and (N4), we have

$$
\begin{align*}
& N(D C(x, y), t) \\
\geq & \min \left\{N\left(D C(x, y)-\frac{D f\left(2^{n} x, 2^{n} y\right)}{2^{3 n}}, \frac{t}{2}\right), N\left(\frac{D f\left(2^{n} x, 2^{n} y\right)}{2^{3 n}}, \frac{t}{2}\right)\right\} \tag{35}\\
\geq & N\left(\frac{D f\left(2^{n} x, 2^{n} y\right)}{2^{3 n}}, \frac{t}{2}\right) \geq N^{\prime}\left(\phi(x, y), \frac{2^{3 n}}{2|r|^{n}} t\right)
\end{align*}
$$

for sufficiently large n, all $x, y \in X$ and all $t>0$. Since $\lim _{n \rightarrow \infty} N^{\prime}\left(\phi(x, y), \frac{2^{3 n}}{|r|^{n}} t\right)=$ $1, N(D C(x, y), t)=1$ for all $t>0$ and so, by (N2), $D C(x, y)=0$ for all $x, y \in X$. By Theorem 20, C is cubic.

To prove the uniquness of C, let $C_{1}: X \longrightarrow Y$ be another cubic mapping satisfying (22). Then for any $x \in X$ and any positive integer $n, C_{1}\left(2^{n} x\right)=$ $2^{3 n} C_{1}(x)$ and so by (31),

$$
\begin{align*}
& N\left(C(x)-C_{1}(x), t\right) \\
\geq & \min \left\{N\left(\frac{C\left(2^{n} x\right)}{2^{3 n}}-\frac{f\left(2^{n} x\right)}{2^{3 n}}, \frac{t}{2}\right), N\left(\frac{C_{1}\left(2^{n} x\right)}{2^{3 n}}-\frac{f\left(2^{n} x\right)}{2^{3 n}}, \frac{t}{2}\right)\right\} \tag{36}\\
\geq & \Phi\left(2^{n} x, 3\left(2^{3}-|r|\right) 2^{3 n} t\right) \geq \Phi\left(x, \frac{3\left(2^{3}-|r|\right) 2^{3 n} t}{|r|^{n}}\right)
\end{align*}
$$

holds for all $x \in X$, all positive integer n, and all $t>0$. Since $|r|<2^{3}$, $\lim _{n \rightarrow \infty} \Phi\left(x, \frac{2^{3 n}\left(2^{3}-|r|\right) t}{|r|^{n}}\right)=1$ and so $C(x)=C_{1}(x)$ for all $x \in X$.

We remark that if $f(0) \neq 0$ in Theorem 3.1, the inequality (22) can be replaced by

$$
N(f(x)-f(0)-C(x), t) \geq \Phi\left(x, 6\left(2^{3}-|r|\right) t\right)
$$

holds for all $x \in X$ and all $t>0$.
Related with Theorem 3.1, we can also have the following theorem. And the proof is similar to that of Theorem 3.1.
Theorem 3.2. Let $\phi: X^{2} \longrightarrow Z$ be a function and r a real number such that $2^{3}<|r|$ and

$$
N^{\prime}\left(\phi\left(\frac{x}{2}, \frac{y}{2}\right), t\right) \geq N^{\prime}\left(\frac{1}{r} \phi(x, y), t\right)
$$

for all $x, y \in X$ all $t>0$. Let $f: X \longrightarrow Y$ be a mapping satisfying $f(0)=0$ and (21). Then there exists a unique cubic mapping $C: X \longrightarrow Y$ satisfying (4) and the inequality

$$
N(f(x)-C(x), t) \geq \Phi\left(x, 6\left(|r|-2^{3}\right) t\right)
$$

holds for all $x \in X$ and all $t>0$.
As an example of $\phi(x, y)$ in Theorem 3.1 and Theorem 3.2, we can take $\phi(x, y)=\epsilon\left(\|x\|^{p}\|y\|^{p}+\|x\|^{2 p}+\|y\|^{2 p}\right)$ which is appeared in [12]. Then we can formulate the following corollary

Corollary 3.3. Let X be a normed space and Y a Banach space. Let f : $X \longrightarrow Y$ be a mapping such that

$$
\begin{equation*}
\|D f(x, y)\| \leq \epsilon\left(\|x\|^{p}\|y\|^{p}+\|x\|^{2 p}+\|y\|^{2 p}\right) \tag{37}
\end{equation*}
$$

for all $x, y \in X$ and a fixed real number p with $0<p<\frac{3}{2}$ or $\frac{3}{2}<p$. Then there is a unique cubic mapping $C: X \longrightarrow Y$ such that

$$
\|f(x)-C(x)\| \leq \begin{cases}\frac{15\|x\|^{2 p}}{2\left(2^{3}-2^{2 p}\right)}, & \text { if } 0<p \leq \log _{4} 3 \\ \frac{5 \times 2^{2 p}\|x\|^{2 p}}{2\left(2^{3}--^{2 p}\right)}, & \text { if } \log _{4} 3<p<\frac{3}{2} \\ \frac{5 \times 2^{2 p}\|x\|^{2 p}}{2\left(2^{2 p}-2^{3}\right)}, & \text { if } \frac{3}{2}<p\end{cases}
$$

for all $x \in X$.
Proof. Define a fuzzy norm on \mathbb{R} by

$$
N_{\mathbb{R}}(x, t)= \begin{cases}\frac{t}{t+|x|}, & \text { if } t>0 \\ 0, & \text { if } t \leq 0\end{cases}
$$

for all $x \in \mathbb{R}$ and all $t>0$. Similary we can define a fuzzy norm N_{Y} on Y. Then $\left(Y, N_{Y}\right)$ is a fuzzy Banach space. Let $\phi(x, y)=\epsilon\left(\|x\|^{p}\|y\|^{p}+\|x\|^{2 p}+\|y\|^{2 p}\right)$. Then $\operatorname{by}(37), f$ satisies the following inequality

$$
N_{Y}(D f(x, y), t) \geq N_{\mathbb{R}}(\phi(x, y), t)
$$

for all $x, y \in X$ and all $t>0$. Note that $\left.N_{\mathbb{R}}(\phi(2 x, 2 y), t)\right)=N_{\mathbb{R}}\left(2^{2 p} \phi(x, y), t\right)$ for all $x, y \in X$ and all $t>0$ and that

$$
\begin{aligned}
& \Phi\left(x, 6\left(2^{3}-2^{2 p}\right) t\right) \\
\geq & \min \left\{N_{\mathbb{R}}\left(3\|x\|^{2 p}, \frac{6\left(2^{3}-2^{2 p}\right) t}{15}\right), N_{\mathbb{R}}\left(2^{2 p}\|x\|^{2 p}, \frac{6\left(2^{3}-2^{2 p}\right) t}{15}\right)\right\} \\
\geq & \begin{cases}N_{\mathbb{R}}\left(\|x\|^{2 p}, \frac{2\left(2^{3}-2^{2 p}\right) t}{15}\right), & \text { if } 0<p \leq \log _{4} 3 \\
N_{\mathbb{R}}\left(\|x\|^{2 p}, \frac{2\left(2^{3}-2^{2 p}\right) t}{5 \times 2^{2 p}}\right), & \text { if } \log _{4} 3<p<\frac{3}{2} \\
N_{\mathbb{R}}\left(\|x\|^{2 p}, \frac{2\left(2^{2 p}-2^{3}\right) t}{5 \times 2^{2 p}}\right), & \text { if } \frac{3}{2}<p\end{cases}
\end{aligned}
$$

for all $x \in X$ and all $t>0$. By Theorem 3.1, there is a unique cubic mapping $C: X \longrightarrow Y$ such that

$$
N_{Y}(f(x)-C(x), t) \geq \begin{cases}N_{\mathbb{R}}\left(\|x\|^{2 p}, \frac{2\left(2^{3}-2^{2 p}\right) t}{15}\right), & \text { if } 0<p \leq \log _{4} 3 \\ N_{\mathbb{R}}\left(\|x\|^{2 p}, \frac{\left.22^{3}-2^{2 p}\right) t}{5^{2} 2^{2 p}}\right), & \text { if } \log _{4} 3<p<\frac{3}{2} \\ N_{\mathbb{R}}\left(\|x\|^{2 p}, \frac{2\left(2^{2 p}-2^{3}\right) t}{5 \times 2^{2 p}}\right), & \text { if } \frac{3}{2}<p\end{cases}
$$

for all $x \in X$ and all $t>0$. Hence we have the result.
We remark that the functional equation (4) is not stable for $p=\frac{3}{2}$ in Corollary 3.3. The following example shows that the (37) is not stable for $p=\frac{3}{2}$.

Example 1. Let $t: \mathbb{R} \longrightarrow \mathbb{R}$ be a mapping defined by

$$
t(x)= \begin{cases}x^{3}, & \text { if }|x|<1 \\ 1, & \text { ortherwise }\end{cases}
$$

and define a mapping $f: \mathbb{R} \longrightarrow \mathbb{R}$ by $f(x)=\sum_{n=0}^{\infty} \frac{t\left(2^{n} x\right)}{8^{n}}$. We will show that f satisfies the functional inequality

$$
\begin{equation*}
|D f(x, y)| \leq \frac{2^{10}}{7}\left(|x|^{\frac{3}{2}}|y|^{\frac{3}{2}}+|x|^{3}+|y|^{3}\right) \tag{38}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$, but there do not exist a cubic mapping $C: \mathbb{R} \longrightarrow \mathbb{R}$ and a positive constant K such that

$$
\begin{equation*}
|C(x)-f(x)| \leq K|x|^{3} \tag{39}
\end{equation*}
$$

for all $x \in \mathbb{R}$.

Proof. Note that $|f(x)| \leq \frac{8}{7}$ for all $x \in \mathbb{R}$.
First, suppose that $\frac{1}{8} \leq|x|^{\frac{3}{2}}|y|^{\frac{3}{2}}+|x|^{3}+|y|^{3}$. Then $|D f(x, y)| \leq \frac{2^{10}}{7}\left(|x|^{\frac{3}{2}}|y|^{\frac{3}{2}}+\right.$ $|x|^{3}+|y|^{3}$) for all $x, y \in \mathbb{R}$.

Now suppose that $\frac{1}{8}>|x|^{\frac{3}{2}}|y|^{\frac{3}{2}}+|x|^{3}+|y|^{3}$. Then there is a non-negative integer m such that

$$
\frac{1}{2^{3 m+4}} \leq|x|^{\frac{3}{2}}|y|^{\frac{3}{2}}+|x|^{3}+|y|^{3}<\frac{1}{2^{3 m+3}}
$$

and so $2^{m}|x|<\frac{1}{2}, 2^{m}|y|<\frac{1}{2}$. Hence we have

$$
\left\{2^{m+1}(2 x \pm y), 2^{m+1}(x \pm y), 2^{m+1} x, 2^{m+1} y\right\} \subseteq(-1,1)
$$

and so for any $n=0,1,2, \cdots, m+1, D t\left(2^{n} x, 2^{n} y\right)=0$ for all $x, y \in X$. Thus

$$
\begin{aligned}
D f(x, y) & \leq \sum_{n=0}^{\infty} \frac{1}{8^{n}} D t\left(2^{n} x, 2^{n} y\right) \leq \sum_{n=m+2}^{\infty} \frac{1}{8^{n}} D t\left(2^{n} x, 2^{n} y\right) \\
& \leq \frac{2^{5}}{7 \times 2^{3 m+4}} \leq \frac{2^{5}}{7}\left(|x|^{\frac{3}{2}}|y|^{\frac{3}{2}}+|x|^{3}+|y|^{3}\right)
\end{aligned}
$$

Thus f satisfies (38).
Suppose that there exist a cubic mapping $C: \mathbb{R} \longrightarrow \mathbb{R}$ and a positive constant K with (39). Since $|f(x)| \leq \frac{8}{7}$,

$$
-K|x|^{3}-\frac{8}{7} \leq C(x) \leq K|x|^{3}+\frac{8}{7}
$$

for all $x \in X$ and since C is cubic,

$$
-K|x|^{3}-\frac{8}{7 n^{3}} \leq C(x) \leq K|x|^{3}+\frac{8}{7 n^{3}}
$$

for all $x \in X$ and all positive integer n. Hence we have $|C(x)| \leq K|x|^{3}$ for all $x \in X$ and so, by (39), we have $|f(x)| \leq 2 K|x|^{3}$ for all $x \in X$. Take a positive integer l such that $l>2 K$, and pick $x \in \mathbb{R}$ with $0<2^{l} x<1$. Then

$$
f(x)=\sum_{n=0}^{\infty} \frac{t\left(2^{n} x\right)}{8^{n}}>\sum_{n=0}^{l-1} \frac{t\left(2^{n} x\right)}{8^{n}}=\sum_{n=0}^{l-1} x^{3}=l x^{3}>2 K x^{3}
$$

which is a cotradiction.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan (1950), no. 2, 64-66.
[2] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. (2003), no. 11, 687-705
[3] S. C. Cheng and J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. (1994), no. 86, 429-436.
[4] P. Gǎvruta, A generalization of the Hyer-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. (1994), no. 184, 431-436.
[5] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. (1941), no. 27, 222-224.
[6] A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Syst (1984), no. 12, 143154.
[7] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika (1975), no. 11, 326-334.
[8] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy approximately cubic mappings, Infor. Sci. (2008), no. 178, 3791-3798.
[9] K. H. Park and Y. S. Jung, Stability of a cubic functional equation on groups, Bull. Korean Math. Soc. (2004), no. 41, 347-357.
[10] J. M. Rassias, Stability of the Ulam stability problem for cubic mappings, Glasnik Matematički (2001), no. 36, 63-72.
[11] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. (1978), no. 72, 297-300.
[12] K. Ravi, M. Arunkumar and J. M. Rassias, Ulam stability for the orthogonally general Euler- Lagrange type functional equation, Int. J. Math. Stat. (2008), no. 3, 36-46.
[13] S. M. Ulam, A collection of mathematical problems, Interscience Publisher, New York, 1964.
[14] M. E. Gordji and H. Khodaie, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis: Theory, Methods \& Applications (2009), no. 11, 5629-5643.

Department of Mathematics and Research Institute for Basic Sciences Jeju National University Jeju 690-756, Republic of Korea

E-mail address: yunys@jejunu.ac.kr
Department of Mathematics Education, Dankook University, 126, Jukjeon, Yongin, Gyeonggi, South Korea 448-701, KOREA

E-mail address: kci206@@hanmail.net

