East Asian Math. J.
Vol. 30 (2014), No. 3, pp. 271-281 “IMNMMQ
http://dx.doi.org/10.7858 /eamj.2014.017

THE HYERS-ULAM STABILITY OF CUBIC FUNCTRIONAL
EQUATIONS IN FUZZY BANACH SPACES

YONG SIK YUN AND CHANG IL Kim*

ABSTRACT. In this paper, we consider the following cubic functional
equation

fBz+y)+ fBz —y) = fle+2y) +2f(z —y) + 2f(3z) — 3f(x) — 6f(y)
and prove the generalized Hyers-Ulam stability for it in fuzzy normed
spaces.

1. Introduction

In 1940, Ulam [13] proposed the following stability problem :

“Let G1 be a group and G2 a metric group with the metric d. Given a
constant ¢ > 0, does there exists a constant ¢ > 0 such that if a mapping
f: Gy — Gq satisfies d(f(xy), f(x)f(y)) < c for all z,y € Gy, then there
exists a unique homomorphism h : G; — G such that d(f(x), h(z)) < ¢ for
all z € G177

In 1941, Hyers [5] answered this problem under the assumption that the groups
are Banach spaces. Aoki [1] and Rassias [11] generalized the result of Hyers.
Rassias [11] solved the generalized Hyers-Ulam stability of the functional in-
equality

1f(x+y) = f(z) = F)l < elll=]” + lyll”)

for some € > 0, a real number p withp < 1 and all x,y € X, where f : X — Y
is a function between Banach spaces. The paper of Rassias [11] has provided a
lot of influence in the development of what we call the generalized Hyers-Ulam
stability or Hyers-Ulam-Rassias stability of functional equations. A general-
ization of the Rassias theorem was obtained by Gavruta [4] by replacing the
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unbounded Cauchy difference by a general control function in the spirit of Ras-
sis approach. In 2003, Bag and Samanta [2] modified the definition of Cheng
and Mordeson [3] by removing a regular condition.

In this paper, we consider the fuzzy version stability problem in the fuzzy
normed linear space setting. The concept of fuzzy norm on a linear space was
introduced by Katsaras [6] in 1984, which was later on studied, following Cheng
and Mordeson [3], to give a new definition of a fuzzy norm in such a manner
that the corresponding fuzzy metric is of Kramosil and Michalek type [7].

Rassias [10], Park and Jung [9] introduced the following cubic functional
equations

flz+2y) +3f(x) =3f(x+y)+ flx —y) +6f(y) (1)

and

fBr+y)+ fBxr—y) =3f(z+y) +3f(z —y) +48f(x) (2)

and investigated its general solution and the generalized Hyers-Ulam-Rassias
stability respectively. It is easy to see that the function f(x) = az? is a solution
of the functional equation (1) and (2), which explains why they are called a
cubic functional equation.

In this paper, we consider the the following functional equation

fBx+y) +fBr—y) = flz+2y) +2f(x —y) +51f(z) —=6f(y) (3)
which is the difference of (1) and (2) and

fBz+y)+fBr—y) = fz+2y) +2f(x —y) +2f(3x) = 3f(x) =6/ (y)- (4)

Moreover we prove the generalized Hyers-Ulam stability for (4) in fuzzy normed
spaces. Mirmostaface and Moslehian [8] proved the stability of a cubic func-
tional equation in fuzzy normed spaces.

Definition 1. Let X be a linear space. A function N : X x R — [0,1] is
called a fuzzy norm on X if for all x,y € X and all s,t € R,
(N1) N(z, t) =0 for t <0;
N2) ac—O if and only if N(z, t) =1 for all t > 0;
) N =(cx, t)=N(z ’\c|)1fc7é0
)N =(z+y, s+1t)=min{N(z,s), N(yt)};
) N(z,-) is a non-decreasing function of R and lim;_,. N(z, t) =1,
(N6) for « # 0, N(x,-) is continuous on R.
In this case, the pair (X ,N) is called a fuzzy normed space.

Definition 2. Let (X, N) be a fuzzy normed space. A sequence {z,} in X is
said to be convergent if there exists an « € X such that lim;_, o N(z,—z,t) = 1.
In this case, x is called the limit of the sequence {x,} in X and one denotes it
by N —lim;_, o0 ,, = .
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Definition 3. Let (X, N) be a fuzzy normed space. A sequence {x,} in X is
said to be Cauchy if for any € > 0, there is an m € N such that for any n > m
and any positive integer p, N(2n4p — Zn,t) > 1 —€for all t > 0.

It is well known that every convergent sequence in a fuzzy normed space is
Cauchy. A fuzzy normed space is said to be complete if each Cauchy sequence
in it is convergent and a complete fuzzy normed space is called a fuzzy Banach
space.

Throughtout this paper, X is a linear space, (Y, N) is a fuzzy Banach space,
and (Z, N') is a fuzzy normed space.

2. Solutions of (4)

In this section, we investigate solutions of (3) and (4) between X and Y.
And then, in Corollary 2.2, it can be concluded that f : X — Y satisfies (3)
if and only if f satisfies (4). We start with the following theorem.

Theorem 2.1. Let f : X — Y be a mapping. Then f satisfies (4) if and
only if f is cubic.

Proof. Clearly, f(0) = 0. Letting z = 0 and y = x in (4), we have

7f(x) = f(=2) = f(22) = 0 ()
for all z € X and letting x = 0 and y = —z in (4), we have
7f(=z) = f(z) = f(=22) =0 (6)
for all x € X. Letting y = = in (4), we have
f(4z) + f(2x) = 3f(3z) +9f(x) =0 (7)
for all z € X. Letting y = —x in (4), we have
fldx) — f(22) = 2f(3x) + 3f(2) + 5f(—x) =0 (®)
for all x € X and letting x = 0 and y = 2z in (4), we have
7f(2x) = f(=22) - f(42) =0 9)
for all x € X. Calulating {(6) +2 x (7) —3 x (8) —8 x (5) — (9)}, we have
f(22) = 2°f(2) (10)
for all x € X. By (7) and (10), we have
f(3z) = 3°f(x) (11)
for all z € X. By (5) and (10),
f(@) = —f(=x) (12)

for all z € X. Replacing y by 3y in (4), we have
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21f(x +y) +27f(x —y)
= f(z+6y) +2f(z — 3y) + 2f(3x) — 3f(x) — 6/ (3y)
for all 2,y € X. Interchanging = and y in (13), by (12), we have

(13)

27f(x+y) —27f(z —y)
= f(6x+y) —2f(3z —y) +2f(3y) — 3f(y) — 6/(3x)
for all 2,y € X. Relpacing y by 2y in (14), by (10), we have

(14)

27f(x + 2y) — 27f(x — 2y)
=8f(Bz +y) — 2f(3x — 2y) + 16 (3y) — 24 (y) — 6 (3x)
for all 2,y € X. Relpacing y by —y in (4), by (12), we have

(15)

fBz+y) + Bz —y)
= [z =2y) +2f(z +y) +2f(3z) = 3f(z) + 6/ (y)
for all ,y € X. By (4) and (16), we have

(16)

fle+2y) = fle—2y) = 2f(x +y) +2f(z —y) —12f(y) =0 (17)
for all z,y € X. Letting y = —y in (15), by (12), we have

27f(x — 2y) — 27f(z + 2y)
=8f(3r —y) = 2f(3x +2y) — 16/ (3y) + 24/ (y) — 6/ (3z)
for all z,y € X. By (15) and (18), we have

(18)

8[f(Bz +y) + f(Bz —y)] — 2[f(3x + 2y) + f(3z — 2y)] — 12f(3z) =0  (19)
for all z,y € X. Replacing 3z by « in (19), by (11), we have

flx+2y) + fz = 2y) = 4f (x +y) +4f(z —y) - 6 ()
for all x,y € X and so f is a cubic, quadratic and additive mapping([14]).
Since f(2z) = 23f(z) for all z € X, f is cubic. The converse is trivial. O

We remark that if f satisfies (4), then f(3z) = 27f(z) for all z € X and
that if f satisfies (4), then f satisfies (3). Similarly, if f satisfies (3), then f
satisfies (4). Hence we have the following corollary

Corollary 2.2. Let f : X — Y be a mapping. Then the following are
equivalent

(1) f satisfies (3),

(2) f satisfies (4), and

(3) f is cubic.
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3. The Generalized Hyers-Ulam stability for (4)

In this section, we prove the generalized Hyers-Ulam stability of functional
equation (4) in fuzzy normed spaces.

For any mapping f : X — Y, we define the difference operator Df :
X2 — Y by
Df(z,y) = fBz+y)+fBr—y)— f(z+2y) —2f(z—y) —2f(3x) +3f(2) +6f(y)
for all z,y € X.

Theorem 3.1. Let ¢ : X2 — Z be a function and r a real number such that
0<|rl<23

N'(¢(2z,2y), t) > N'(ré(x,y), t) (20)
forallz,y € X allt > 0. Let f : X — Y be a mapping such that f(0) =0
and

N(Df(z,y), t) > N'(¢(z,y), t) (21)
for all x,y € X and t > 0. Then there exists a unique cubic mapping C :
X — Y satisfying (4) and the inequality

N(f(x) = C(x), t) > ®(x,6(2° — |r|)t) (22)
holds for all x € X and all t > 0, where

Bz 1) = mind N'(6(0, ~2), -2, N'(0(,2), ),
/ t ’ t , t
N'(¢(x, —x), 1—5),N (6(0,2), 1—5),N (6(0,2), Ts)}'

Proof. By (20) and (N3), we have
t
N/(¢(2nma 2ny), t) 2 N’(r"¢(m,y), t) = N/(¢(x’ y)v W) (23)
for all z,y € X and all ¢t > 0 and so by (23), we have

N'(¢(2"z,2"y), |r|"t) = N'(¢(x,y), 1) (24)
for all ,y € X and all t > 0. By (21), we have

N(6f(2x) — 48f(x),t)
=N(Df(0,—z)+2Df(z,x2) —3Df(x,—x) —8Df(0,2) — Df(0,2x),t)

> min{N(Df (0, ~2), 1), N@DJ (z,2), 72), N3Df (2, ~2), T,
NEBDf(0, ), %),N(Df(O,Zx), 1%)} > Bz, t)
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for all z € X and all ¢ > 0. Hence, by (21) and (N3), we have

N -T2ty e (25)

for all x € X and all t > 0. By (24), (25), and (N3), we have

f@ra)  f(2rtta) r|™t mpy
N( S 930D’ §x 23(n+1)) > 02"z, |r|"t) > ®(x,t) (26)

for all x € X, all t > 0 and all positive integer n. Hence by (26) and (N4), for
any z € X, we have

nge n—1 Ti
R e =

—~ 6 x 23(i+1)
n—-1 i i+1 n—1 i
@7 _ f(2iz) [ ) rfit
) - N(z(:)[ 23i 23(i+1) ¥ ZO 6 X 23(i+1))
1= 1=
R L SO Cianes I A .
> min{N( 5 T 93 ) G x 23(i+1)) |0<i<n-—1} > ®(z,t)

for all x € X, all t > 0 and all positive integer n. So for any x € X, , we have

mo. m+p . m+p—1 Ti
INPLCA I (CIA N U

923m 23(m+p) ’ < 6 x 23(i+1)
G8) e peta) T i
= N( Z [ 23i  93(i+1) I, Z 6X23(i+1))

> ®(x,t)

for all x € X, all ¢ > 0, all non-negative integer m and all positive integer p.
Thus, by (28) and (N3), for any = € X, we have

2my 2mtPy t
f(23m ) - ']“Q(B(erp))7 ) - (I)(.’L', m+p—1 |r|? )
Diem  Gxo5GTD)
for all x € X, all ¢ > 0, all non-negative integer m and all positive inte-
. 00 )P . . t

ger p. Since )~ sairry is convergent, limy, oo ER
- D Ry

lim 00 P(2,t) = 1, {f(223mz)} is a Cauchy sequence in (Y, N). Since (Y, N) is

a fuzzy Banach space, there is a mapping C' : X — Y defined by

N(

(29)

= 0o0. Since

C(z) =N — lim f(23’;a:) or
(30) 2nn—>oo 2
im NEEE @), =1, 150

n—oo 23n
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for all z € X. Moreover by (29), we have

(@) - 12D s o ) (31)

Zi:o 6x23(i+1)

for all x € X, all ¢ > 0 and all positive integer n. Let € be a real number with
0 < e < 1. Then, by (30), (31), and (N4), we have

N(f(z) = C(z), )
> min{N(f(z) - L (;Sf), (1— ), N(L (;f) —C(x), et)}

1—e)t
> 0@, =) > @, 6(1- 2~ )
Zi:O W)
for sufficiently large positive integer n, all € X, and all ¢ > 0. Since N(z,-)
is continuous on R, we get

(32)

N(f(z) = C(x), t) = ®(x,6(2° — |r|)t) (33)
for all x € X and all t > 0 and so we have (22). By (21) and (N3), we have
Df(2nz, 2" oo 93n
NEIEREN ) > N9 ), > N (o), ot (34
for all z,y € X and all ¢ > 0. Since lim, . N'(¢(z,y), |2:| t) = 1, by (30),
(34), and (N4), we have
N(DC(z,y), 1)
) Df(2"z,2"y) t Df(2"x,2"y) t
(35) > min{N(DC(z,y) — T 9 5)? N(T’ 5)}
Df(2"z,2%y) t , 93n
>N(——, -)> N —_—
> VLRI, 5> Nolen), 5ot

23n

for sufficiently large n, all 2,y € X and all £ > 0. Since lim, o0 N'(¢(2,y), 7mt) =
1, N(DC(xz,y), t) =1 for all ¢t > 0 and so, by (N2), DC(z,y) = 0 for all
xz,y € X. By Theorem 20, C is cubic.

To prove the uniquness of C, let C7 : X — Y be another cubic mapping
satisfying (22). Then for any x € X and any positive integer n, C1(2"z) =
23704 (x) and so by (31),

N(C(z) = Ci(x), t)
C@w) )ty Ci2w) M)t
23n 23n 7 97 23n 23n 7 9
3(23 — |r])237t
ST

(36) > min{N(

> ®(2"x,3(2° — |r])2°"t) > ®(,
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holds for all x € X, all positive integer n, and all ¢ > 0. Since |r| < 23,
3n (63
lim;, 00 @ (2, M) =1 and so C(z) = Cy(x) for all x € X. O

‘T“"

We remark that if f(0) # 0 in Theorem 3.1, the inequality (22) can be
replaced by

N(f(z) = f(0) = C(x), t) > P(x,6(2° —|r|)t)
holds for all z € X and all ¢ > 0.

Related with Theorem 3.1, we can also have the following theorem. And the
proof is similar to that of Theorem 3.1.

Theorem 3.2. Let ¢ : X> — Z be a function and r a real number such that
23 < |r| and
Ty 1
N'(¢(=,2Z > N'(-
6. D), 0= NCowy), 1

forallxz,y € X allt > 0. Let f: X — Y be a mapping satisfying f(0) =0
and (21). Then there exists a unique cubic mapping C : X — Y satisfying
(4) and the inequality

N(f(z) = C(x), t) > ®(x,6(|r| - 2°)t)
holds for all x € X and all t > 0.
As an example of ¢(z,y) in Theorem 3.1 and Theorem 3.2, we can take

d(x,y) = e(||z||P|lyllP + ||=||** + ||ly||*P) which is appeared in [12]. Then we can
formulate the following corollary

Corollary 3.3. Let X be a normed space and Y a Banach space. Let f :
X — 'Y be a mapping such that

IDf (@, )|l < e(llalPlyl® + |z + [ly]1*?) (37)
or all z,y € X and a fized real number p with 0 < p < 2 or 2 < p. Then there
2 2
is a unique cubic mapping C : X — Y such that

s, 0 <p<log,3
If(2) = Ca)]| < § ezl iflog, 3 <p <
SR i<y
forallx € X.

Proof. Define a fuzzy norm on R by

L ift>0
NR(x’t):{(t)Hw ift<0
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forallz € R and all £ > 0. Similary we can define a fuzzy norm Ny on Y. Then
(Y, Ny) is a fuzzy Banach space. Let ¢(z,y) = e([[z][lyl|” + [|=[|*” + [[y]**).
Then by(37), f satisies the following inequality

Ny (Df(z,y),t) > Nr(o(z,y),t)
for all z,y € X and all t > 0. Note that Ng(¢(2x,2y),t)) = Nr(2?P¢(z,y),t)
for all x,y € X and all ¢ > 0 and that

®(z,6(2° — 2%P)1)

> min{ Nz (3]}, 6(2%”) Ne (22|, %)}
N ([P, 2252200y i 0 < p < log, 3

> & Na(le]?r, 22200, iflog, 3 <p < 3
N ([, 22220t i 3 < p

for all z € X and all t > 0. By Theorem 3.1, there is a unique cubic mapping
C: X — Y such that

Na([lz]|2e, 222220 £ 0 < p < log, 3

15
3" 52p .
Ny (f(z) = C(z), t) > { Na(|z]?, 222720, iflog,3<p< 3
No(lgl2e, 225200 s
R(”‘TH » T Bx22p )v s <p
for all z € X and all ¢ > 0. Hence we have the result. O

We remark that the functional equation (4) is not stable for p = 2 in Corol-
lary 3.3. The following example shows that the (37) is not stable for p = %

Example 1. Let t : R — R be a mapping defined by
30if 1
t(x):{x’ i |x|<
ortherwise

and define a mapping f: R — R by f(z) = >_.7, t(ZSZa:). We will show that
f satisfies the functional inequality

210 3 3
DS (o)l < (ol Fyl? + 12 + |yf°) (39)

for all z,y € R, but there do not exist a cubic mapping C' : R — R and a
positive constant K such that

C(z) = f(2)] < K|z[? (39)
for all z € R.
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Proof. Note that |f(ac)| < 8 forall z € R.

First, suppose that + < || 2 |y\%+\x|3—|—|y\3. Then |Df(z,y)| < ¥(|x|%|y|%—l—
lz|2 + |y|?) for all z,y e R.

Now suppose that & > 1z|2|y|? + |z|* + |y[3. Then there is a non-negative
integer m such that

e <alE ) 2P+ P < s
93m+4 — 23m+3

and so 2™|z| < 2™|y| < 4. Hence we have

27

(2" 2 xy), 2" (@ 2y), 2, 27y C (-1, 1)
and so for any n =0,1,2,---,m + 1, Dt(2"z,2"y) = 0 for all z,y € X. Thus

o0

Ly 1
flz,y) < Z 8— 2"z, 2"y) < Z S—nDt(Q":ﬂ,Q”y)
25

n=m-+2

< mm . (|9C|z|y|z + [ + [y*).

Thus f satisfies (38).

Suppose that there exist a cubic mapping C' : R — R and a positive
constant K with (39). Since |f(z)| < 2

8 8
—K|z|® - = < O(x) < Klz]* + -

for all x € X and since C' is cubic,

8 8
—K|x\3—7713 <C(z) §K|x‘3+77n3

for all z € X and all positive integer n. Hence we have |C(x)| < K|x|3 for all
x € X and so, by (39), we have |f(z)| < 2K|z|? for all 2 € X. Take a positive
integer [ such that [ > 2K, and pick € R with 0 < 2'2 < 1. Then

0o -1 -1
t(2"xz) t(2"x) 3 3 3
z) = > = v’ =lz® > 2Kx
=2 n e Ty
which is a cotradiction. O
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