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FUZZY STABILITY OF A GENERALIZED QUADRATIC
FUNCTIONAL EQUATION

Abbas Najati

Abstract. We prove the generalized Hyers–Ulam stability of the gener-
alized quadratic functional equation

f(rx + sy) = r2f(x) + s2f(y) +
rs

2
[f(x + y)− f(x− y)]

in fuzzy Banach spaces, where r, s are non-zero rational numbers with
r2 + s2 6= 1.

1. Introduction

The stability problem of functional equations originated from a question of
Ulam [27] concerning the stability of group homomorphisms: Let (G1, ∗) be a
group and let (G2, ¦, d) be a metric group with the metric d(·, ·). Given ε > 0,
does there exist δ(ε) > 0 such that if a mapping h : G1 → G2 satisfies the
inequality

d(h(x ∗ y), h(x) ¦ h(y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x),H(x)) < ε

for all x ∈ G1?
Hyers [11] gave a first affirmative answer to the question of Ulam for Banach

spaces. Aoki [3] and Th. M. Rassias [24] provided a generalization of the Hyers’
theorem for additive and linear mappings, respectively, by allowing the Cauchy
difference to be unbounded. P. Găvruta [9] provided a further generalization
of the Th. M. Rassias’ theorem by using a general control function.

The functional equation

(1.1) f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. Quadratic functional equations were
used to characterize inner product spaces [1, 2, 13]. In particular, every solution
of the quadratic equation (1.1) is said to be a quadratic mapping. It is well
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known that a mapping f between real vector spaces is quadratic if and only
if there exists a unique symmetric bi-additive mapping B such that f(x) =
B(x, x) for all x (see [1, 16]). The bi-additive mapping B is given by

B(x, y) =
1
4

[
f(x+ y)− f(x− y)

]
.

The generalized Hyers-Ulam stability problem for the quadratic functional
equation (1.1) was proved by F. Skof for mappings f : E1 → E2, where E1

is a normed space and E2 is a Banach space (see [26]). Cholewa [6] noticed
that the theorem of Skof is still true if the relevant domain E1 is replaced by
an abelian group. In [7], Czerwik proved the generalized Hyers-Ulam stability
of the quadratic functional equation (1.1). Grabiec [10] has generalized these
results mentioned above. Jun and Lee [14] proved the generalized Hyers-Ulam
stability of a Pexiderized quadratic equation. The stability problems of several
functional equations have been extensively investigated by a number of authors
and there are many interesting results concerning this problem (see [14]–[23]).
We also refer the readers to the books [8], [12], [15] and [25].

We recall some basic facts concerning fuzzy Banach spaces and some pre-
liminary results.

Definition 1.1 ([4]). Let X be a real vector space. A function N : X × R→
[0, 1] is called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c| ) if c 6= 0;
(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1;
(N6) for x 6= 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.

Example 1.2. Let (X, ‖ · ‖) be a normed linear space and α, β > 0. Then

N(x, t) =
{ αt

αt+β‖x‖ , t > 0, x ∈ X;
0, t ≤ 0, x ∈ X

is a fuzzy norm on X.

Example 1.3. Let (X, ‖ · ‖) be a normed linear space and β > α > 0. Then

N(x, t) =





0, t ≤ α‖x‖;
t

t+(β−α)‖x‖ , α‖x‖ < t ≤ β‖x‖;
1, t > β‖x‖

is a fuzzy norm on X.

Definition 1.4. Let (X,N) be a fuzzy normed space. A sequence {xn} in X
is said to be convergent if there exists x ∈ X such that limn→∞N(xn−x, t) = 1
for all t > 0. In this case, x is called the limit of the sequence {xn} and we
denote it by N -limxn = x.
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The limit of the convergent sequence {xn} in (X,N) is unique. Since if
N -limxn = x and N -limxn = y for some x, y ∈ X, we have from (N4) that

N(x− y, t) ≥ min{N(x− xn, t/2), N(xn − y, t/2)}
for all t > 0 and all n ∈ N. So N(x− y, t) = 1 for all t > 0. Hence (N2) implies
that x = y.

Definition 1.5. Let (X,N) be a fuzzy normed space. A sequence {xn} in X
is called Cauchy if for each ε > 0 and each t > 0 there exists M ∈ N such that
for all n ≥M and all p > 0, we have N(xn+p − xn, t) > 1− ε.

It follows from (N4) that every convergent sequence in a fuzzy normed space
is Cauchy. If in a fuzzy normed space, each Cauchy sequence is convergent,
then the fuzzy norm is said to be complete and the fuzzy normed space is called
a fuzzy Banach space.

Example 1.6. Let N : R× R→ [0, 1] be a fuzzy norm on R defined by

N(x, t) =
{ t

t+|x| , t > 0;
0, t ≤ 0.

Then (R, N) is a fuzzy Banach space. Let {xn} be a Cauchy sequence in R,
δ > 0 and ε = δ

1+δ . Then there exists M ∈ N such that for all n ≥ M and all
p > 0, we have 1

1+|xn+p−xn| > 1− ε. So |xn+p − xn| < δ for all n ≥M and all
p > 0. Therefore {xn} is a Cauchy sequence in (R, | · |). Let xn → x0 ∈ R as
n→∞. Then limn→∞N(xn − x0, t) = 1 for all t > 0.

We say that a mapping f : X → Y between fuzzy normed vector spaces X
and Y is continuous at a point x0 ∈ X if for each sequence {xn} converging
to x0 in X, then the sequence {f(xn)} converges to f(x0). If f : X → Y
is continuous at each x ∈ X, then f : X → Y is said to be continuous on
X. For different types of continuity such as fuzzy continuity, sequential fuzzy
continuity, weakly fuzzy continuity and strongly fuzzy continuity of an operator
over fuzzy normed linear spaces we refer the interested reader to [5].

Throughout this paper, we assume that r, s are non-zero rational numbers
with r2+s2 6= 1, and that X is a vector space and that (Y,N) is a fuzzy Banach
space.

In this paper, we prove the generalized Hyers–Ulam stability of the following
generalized quadratic functional equation

(1.2) f(rx+ sy) = r2f(x) + s2f(y) +
rs

2
[f(x+ y)− f(x− y)]

in fuzzy Banach spaces. Letting r = s = 1 in (1.2), we get the quadratic
functional equation (1.1). For convenience, we use the following abbreviation
for a given mapping f : X → Y,

Df(x, y) : = f(rx+ sy)− r2f(x)− s2f(y)− rs

2
[f(x+ y)− f(x− y)]

for all x, y ∈ X.
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2. Stability of the generalized quadratic functional equation (1.2)

We start this section with the following result concerning on the functional
equation (1.2).

Proposition 2.1 ([21]). Let X and Y be real vector spaces. A mapping f :
X → Y satisfies

(2.1) Df(x, y) = 0

for all x, y ∈ X if and only if f is quadratic.

Now we prove the generalized Hyers–Ulam stability of the quadratic func-
tional equation (1.2) in fuzzy Banach spaces. In this section X is a linear space,
X is a linear normed space and (Y,N) is a fuzzy Banach space.

Theorem 2.2. Let ϕ : X2 \ {(0, 0)} → (0,∞) be a function such that

(2.2) ϕ̃(x, y) :=
∞∑

n=0

ϕ(rnx, rny)
r2n

<∞

for all (x, y) ∈ X2 \ {(0, 0)}. Let f : X → Y be a mapping with f(0) = 0 such
that

(2.3) lim
t→∞

N (Df(x, y), tϕ(x, y)) = 1

uniformly on X2 \ {(0, 0)}. Then Q(x) := N -limn→∞
f(rnx)

r2n exists for each
x ∈ X and defines a quadratic mapping Q : X → Y such that if for some
δ > 0, α > 0

(2.4) N (Df(x, y), δϕ(x, y)) ≥ α

for all (x, y) ∈ X2 \ {(0, 0)}, then

(2.5) N
(
f(x)−Q(x),

δ

r2
ϕ̃(x, 0)

) ≥ α

for all x ∈ X \ {0}.
Furthermore, the quadratic mapping Q : X → Y is a unique mapping such

that

(2.6) lim
t→∞

N(f(x)−Q(x), tϕ̃(x, 0)) = 1

uniformly on X \ {0}.
Proof. For a given ε > 0, by (2.3), we can find some t0 > 0 such that

(2.7) N (Df(x, y), tϕ(x, y)) ≥ 1− ε

for all (x, y) ∈ X2 \ {(0, 0)} and all t ≥ t0. Letting y = 0 in (2.7), we get

(2.8) N
(
f(rx)− r2f(x), tϕ(x, 0)

) ≥ 1− ε
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for all x ∈ X \ {0} and all t ≥ t0. Replacing x by rnx in (2.8) and using (N3),
we get

(2.9) N
(f(rn+1x)

r2n+2
− f(rnx)

r2n
,

t

r2n+2
ϕ(rnx, 0)

)
≥ 1− ε

for all x ∈ X \ {0}, all t ≥ t0 and all integers n ≥ 0. Since

N
(f(rn+px)
r2(n+p)

− f(rnx)
r2n

,

n+p−1∑

k=n

t

r2k+2
ϕ(rkx, 0)

)

= N
( n+p−1∑

k=n

[f(rk+1x)
r2k+2

− f(rkx)
r2k

]
,

n+p−1∑

k=n

t

r2k+2
ϕ(rkx, 0)

)

≥ min
n≤k≤n+p−1

{
N

(f(rk+1x)
r2k+2

− f(rkx)
r2k

,
t

r2k+2
ϕ(rkx, 0)

) }
,

we get from (2.9) that

(2.10) N
(f(rn+px)
r2(n+p)

− f(rnx)
r2n

,

n+p−1∑

k=n

t0
r2k+2

ϕ(rkx, 0)
)
≥ 1− ε

for all x ∈ X \ {0} and all integers n ≥ 0, p ≥ 1. Let x ∈ X \ {0} and δ > 0. It
follows from (2.2) that there exists M ∈ N such that

t0
r2

n+p−1∑

k=n

ϕ(rkx, 0)
r2k

< δ

for all n ≥M and all integers p ≥ 1. Now we deduce from (N5) and (2.10) that

N
(f(rn+px)
r2(n+p)

− f(rnx)
r2n

, δ
)
≥ 1− ε

for all n ≥ M and all integers p ≥ 1. Hence { f(rnx)
r2n } is a Cauchy sequence in

Y . Since Y is a fuzzy Banach space, this sequence converges to some Q(x) ∈
Y . Since f(0) = 0, we can define a mapping Q : X → Y by Q(x) := N -
limn→∞

f(rnx)
r2n , i.e., for each t > 0 and x ∈ X, limn→∞N( f(rnx)

r2n −Q(x), t) = 1.
Let x, y ∈ X and t > 0. It follows from (N2) and (N4) that

N(DQ(x, y), t)

≥ min
{
N

(
Q(rx+ sy)− f(rn(rx+ sy))

r2n
,
t

5

)
,

N
(
r2
f(rnx)
r2n

− r2Q(x),
t

5

)
, N

(
s2
f(rny)
r2n

− s2Q(y),
t

5

)
,

N
(rs[f(rn(x+ y))− f(rn(x− y))]

2r2n
− rs

2
[Q(x+ y)−Q(x− y)],

t

5

)
,

N
(
Df(rnx, rny),

r2nt

5

) }
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for all n ≥ 0. Let 0 < ε < 1. From the definition of Q, there exists M0 ∈ N
such that the first four terms on the right-hand side of the above inequality are
greater than 1− ε for all n ≥M0. By (2.3), we can find some t0 > 0 such that
(2.7) holds true. Since limn→∞ r−2nϕ(rnx, rny) = 0, there exists M1 ≥ M0

such that t0ϕ(rnx, rny) < r2nt
5 for all n ≥M1. Therefore by (N5) and (2.7) we

have

N
(
Df(rnx, rny),

r2nt

5

)
≥ N

(
Df(rnx, rny), t0ϕ(rnx, rny)

) ≥ 1− ε

for all n ≥ M1. Thus N(DQ(x, y), t) ≥ 1− ε for all x, y ∈ X, all t > 0 and all
0 < ε < 1. It follows that N(DQ(x, y), t) = 1 for all t > 0, and (N2) implies
that DQ(x, y) = 0 for all x, y ∈ X. So Q is quadratic by Proposition 2.1.

Now let for some positive δ and α, (2.4) holds. Let

ϕn(x, 0) :=
1
r2

n−1∑

k=0

ϕ(rkx, 0)
r2k

for all x ∈ X \ {0}. Let x ∈ X \ {0} and t > 0. By the same reasoning as in
the beginning of the proof, similar to (2.10), one can deduce from (2.4) that

(2.11) N
(f(rpx)

r2p
− f(x),

p−1∑

k=0

δ

r2k+2
ϕ(rkx, 0)

)
≥ α

for all positive integers p. Hence we have

(2.12)
N(f(x)−Q(x), δϕn(x, 0) + t)

≥ min
{
N

(
f(x)− f(rnx)

r2n
, δϕn(x, 0)

)
, N

(f(rnx)
r2n

−Q(x), t
)}

.

Combining (2.11) and (2.12) and the fact that limn→∞N( f(rnx)
r2n −Q(x), t) = 1,

we observe that
N(f(x)−Q(x), δϕn(x, 0) + t) ≥ α

for large enough n ∈ N. It follows from the continuity of the real function
N(f(x)−Q(x), ·) that

N
(
f(x)−Q(x),

δ

r2
ϕ̃(x, 0) + t

) ≥ α.

Letting t→ 0, we conclude (2.5).
To end the proof, it remains to prove the uniqueness of Q. Let T be another

quadratic mapping satisfying (2.6). Given ε > 0, by applying (2.6) for Q and
T , we can find some t0 > 0 such that

N(f(x)−Q(x), tϕ̃(x, 0)) ≥ 1− ε,

N(f(x)− T (x), tϕ̃(x, 0)) ≥ 1− ε
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for all x ∈ X \ {0} and all t ≥ t0. Fix some x ∈ X \ {0} and c > 0. So we find
some integer n0 such that

t0

∞∑

k=n

r−2kϕ(rkx, 0) <
c

2

for all n ≥ n0. Since

∞∑

k=n

r−2kϕ(rkx, 0) =
1
r2n

∞∑

k=0

r−2kϕ(rn+kx, 0) =
1
r2n

ϕ̃(rnx, 0),

we have

N(Q(x)− T (x), c)

≥ min
{
N

(f(rnx)
r2n

−Q(x),
c

2

)
, N

(
T (x)− f(rnx)

r2n
,
c

2

)}

= min
{
N

(
f(rnx)−Q(rnx),

r2nc

2

)
, N

(
T (rnx)− f(rnx),

r2nc

2

)}

≥ min
{
N

(
f(rnx)−Q(rnx), r2nt0

∞∑

k=n

r−2kϕ(rkx, 0)
)
,

N
(
T (rnx)− f(rnx), r2nt0

∞∑

k=n

r−2kϕ(rkx, 0)
)}

= min
{
N(f(rnx)−Q(rnx), t0ϕ̃(rnx, 0)), N(T (rnx)− f(rnx), t0ϕ̃(rnx, 0))

}

≥ 1− ε.

Therefore N(Q(x) − T (x), c) = 1 for all c > 0. Thus Q(x) = T (x) for all
x ∈ X \ {0}. Since Q(0) = T (0) = 0, we have Q = T. ¤

Corollary 2.3. Let θ, p, q > 0 and δ, ε be non-negative real numbers with
δ2 + ε2 6= 0. Suppose that f : X→ Y is a function with f(0) = 0 such that

lim
t→∞

N
(
Df(x, y), tϕ(x, y)

)
= 1

uniformly on X2 \ {(0, 0)}, where ϕ : X2 \ {(0, 0)} → (0,∞) is defined by

ϕ(x, y) =





δ + ε(‖x‖p + ‖y‖q), 0 < p, q < 2, |r| > 1;

θ(‖x‖p + ‖y‖q), p, q > 2, |r| < 1.

Then there is a unique quadratic mapping Q : X→ Y such that

lim
t→∞

N
(
f(x)−Q(x), tψ(x)

)
= 1
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uniformly on X \ {0}, where

ψ(x) =





δ

r2 − 1
+

ε

r2 − |r|p ‖x‖
p, 0 < p, q < 2, |r| > 1;

‖x‖p

r2 − |r|p , p, q > 2, |r| < 1.

Remark 2.4. Let f : X → Y be a mapping with f(0) = 0 for which there exists
a function Φ : X2 \ {(0, 0)} → (0,∞) such that

Φ̃(x, y) :=
∞∑

n=1

r2nΦ
( x
rn
,
y

rn

)
<∞,

lim
t→∞

N (Df(x, y), tΦ(x, y)) = 1

uniformly on X2 \ {(0, 0)}. By a similar method to the proof of Theorem 2.2,
there exists a unique quadratic mapping Q : X → Y satisfying

lim
t→∞

N(f(x)−Q(x), tΦ̃(x, 0)) = 1

uniformly on X \ {0}. For the case

Φ(x, y) =





δ + ε(‖x‖p + ‖y‖q), 0 < p, q < 2, |r| < 1;

θ(‖x‖p + ‖y‖q), p, q > 2, |r| > 1

there exists a unique quadratic mapping Q : X→ Y satisfying

Q(x) := N - lim
n→∞

r2nf
( x
rn

)
, lim

t→∞
N

(
f(x)−Q(x), tΨ(x)

)
= 1

uniformly on X \ {0}, where

Ψ(x) =





δ

1− r2
+

ε

|r|p − r2
‖x‖p, 0 < p, q < 2, |r| < 1;

‖x‖p

|r|p − r2
, p, q > 2, |r| > 1.

Theorem 2.5. Let ϕ : X2 \ {(0, 0)} → (0,∞) be a function such that

(2.13) ϕ̃(x, y) :=
∞∑

n=0

ϕ(2nx, 2ny)
4n

<∞

for all (x, y) ∈ X2 \ {(0, 0)}. Let f : X → Y be an even mapping with f(0) = 0
such that

(2.14) lim
t→∞

N (Df(x, y), tϕ(x, y)) = 1
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uniformly on X2 \ {(0, 0)}. Then Q(x) := N -limn→∞
f(2nx)

4n exists for each
x ∈ X and defines a quadratic mapping Q : X → Y such that if for some
δ > 0, α > 0

(2.15) N
(
∆f(x, y), δψ

(x
r
,
y

s

)) ≥ α

for all (x, y) ∈ (X \ {0})× (X \ {0}), then

(2.16) N
(
f(x)−Q(x),

δ

4

∞∑

k=0

1
4k
ψ

(2kx

r
,
2kx

s

)) ≥ α

for all x ∈ X \ {0}, where

ψ(x, y) := ϕ(x, y) + ϕ(x,−y) + 2ϕ(x, 0) + 2ϕ(0, y),

∆f(x, y) := f(x+ y) + f(x− y)− 2f(x)− 2f(y).

Furthermore, the quadratic mapping Q : X → Y is a unique mapping such
that

(2.17) lim
t→∞

N
(
f(x)−Q(x), t

∞∑

k=0

1
4k
ψ

(2kx

r
,
2kx

s

))
= 1

uniformly on X \ {0}.
Proof. It follows from (2.13) that

∞∑
n=0

ψ(2nx, 2ny)
4n

<∞

for all (x, y) ∈ (X \ {0})× (X \ {0}). Since f is even, it is clear that

D̂f(x, y) := Df(x, y) +Df(x,−y)− 2Df(x, 0)− 2Df(0, y)

= f(rx+ sy) + f(rx− sy)− 2f(rx)− 2f(sy)

for all x, y ∈ X. Since

N
(
D̂f(x, y), tψ(x, y)

)

≥ min
{
N (Df(x, y), tϕ(x, y)) , N (Df(x,−y), tϕ(x,−y)) ,

N (Df(x, 0), tϕ(x, 0)) , N (Df(0, y), tϕ(0, y))
}
,

it follows from (2.14) that

(2.18) lim
t→∞

N
(
D̂f(x, y), tψ(x, y)

)
= 1

uniformly on (X \ {0})× (X \ {0}). By (2.18), we deduce that

(2.19) lim
t→∞

N
(
∆f(x, y), tψ

(x
r
,
y

s

))
= 1
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uniformly on (X \ {0}) × (X \ {0}). For a given ε > 0, by (2.19), we can find
some t0 > 0 such that

(2.20) N
(
∆f(x, y), tψ

(x
r
,
y

s

)) ≥ 1− ε

for all (x, y) ∈ (X \ {0})× (X \ {0}) and all t ≥ t0. Letting y = x in (2.20), we
get

(2.21) N
(
f(2x)− 4f(x), tψ

(x
r
,
x

s

)) ≥ 1− ε

for all x ∈ X \ {0} and all t ≥ t0. Replacing x by 2nx in (2.21) and using (N3),
we get

(2.22) N
(f(2n+1x)

4n+1
− f(2nx)

4n
,

t

4n+1
ψ

(2nx

r
,
2nx

s

)) ≥ 1− ε

for all x ∈ X \ {0}, all t ≥ t0 and all integers n ≥ 0. Since

N
(f(2n+px)

4n+p
− f(2nx)

4n
,

n+p−1∑

k=n

t

4k+1
ψ

(2kx

r
,
2kx

s

))

= N
( n+p−1∑

k=n

[f(2k+1x)
4k+1

− f(2kx)
4k

]
,

n+p−1∑

k=n

t

4k+1
ψ

(2kx

r
,
2kx

s

))

≥ min
n≤k≤n+p−1

{
N

(f(2k+1x)
4k+1

− f(2kx)
4k

,
t

4k+1
ψ

(2kx

r
,
2kx

s

))}
,

we get from (2.22) that

(2.23) N
(f(2n+px)

4n+p
− f(2nx)

4n
,

n+p−1∑

k=n

t0
4k+1

ψ
(2kx

r
,
2kx

s

)) ≥ 1− ε

for all x ∈ X \{0} and all integers n ≥ 0, p ≥ 1. Similar to the proof of Theorem
2.2, we conclude from (2.23) that the sequence { f(2nx)

4n } is Cauchy in Y for
each x ∈ X. So we can define a (quadratic) mapping Q : X → Y by Q(x) :=
N -limn→∞

f(2nx)
4n , namely, for each t > 0 and x ∈ X, limn→∞N( f(2nx)

4n −
Q(x), t) = 1. The rest of the proof is similar to the proof of Theorem 2.2 and
we omit the details. ¤

Corollary 2.6. Let 0 < p, q < 2 and δ, ε be real numbers with δ2 + ε2 6= 0.
Suppose that f : X→ Y is an even function with f(0) = 0 such that

lim
t→∞

N
(
Df(x, y), tϕ(x, y)

)
= 1

uniformly on X2 \ {(0, 0)}, where ϕ : X2 \ {(0, 0)} → (0,∞) is defined by

ϕ(x, y) := δ + ε(‖x‖p + ‖y‖q).

Then there is a unique quadratic mapping Q : X→ Y such that

lim
t→∞

N
(
f(x)−Q(x), tψ(x)

)
= 1
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uniformly on X \ {0}, where

ψ(x) = δ +
2ε

|r|p(4− 2p)
‖x‖p +

2ε
|s|q(4− 2q)

‖x‖q.

Remark 2.7. Let f : X → Y be an even mapping with f(0) = 0 for which there
exists a function Φ : X2 \ {(0, 0)} → (0,∞) such that

Φ̃(x, y) :=
∞∑

n=1

4nΦ
( x
2n
,
y

2n

)
<∞,

lim
t→∞

N (Df(x, y), tΦ(x, y)) = 1

uniformly on X2 \ {(0, 0)}. By a similar method to the proof of Theorem 2.5,
there exists a unique quadratic mapping Q : X → Y satisfying

lim
t→∞

N
(
f(x)−Q(x), t

∞∑

k=1

4kψ
( x

2kr
,
x

2ks

))
= 1

uniformly on X \{0}, where ψ(x, y) := ϕ(x, y)+ϕ(x,−y)+2ϕ(x, 0)+2ϕ(0, y).
For the case

Φ(x, y) = ε(‖x‖p + ‖y‖q), (p, q > 2, ε > 0)

there exists a unique quadratic mapping Q : X→ Y satisfying

Q(x) := N - lim
n→∞

4nf
( x
2n

)
, lim

t→∞
N

(
f(x)−Q(x), tΨ(x)

)
= 1

uniformly on X \ {0}, where

Ψ(x) =
‖x‖p

|r|p(2p − 4)
+

‖x‖q

|s|q(2q − 4)
.

For the case p = q = 2, we have the following counterexample.

Example 2.8. Let φ : R→ R be defined by

φ(x) :=
{
µx2 for |x| < 1;
µ for |x| ≥ 1,

where µ is a positive real number. Consider the function f : R → R by the
formula

f(x) :=
∞∑

n=0

α−2nφ(αnx),

where α =
√

1 + r2 + s2 + |rs|. Then f is continuous, bounded and satisfies

∣∣Df(x, y)
∣∣ ≤ α10

α2 − 1
µ(x2 + y2)

for all x, y ∈ R (see [21]). So

lim
t→∞

N
(
Df(x, y), t(x2 + y2)

)
= 1
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uniformly on R2 \ {(0, 0)}, where N(·, ·) is the fuzzy norm on R defined in
Example 1.6. Let Q : R→ R be a quadratic function such that

lim
t→∞

N
(
f(x)−Q(x), tx2

)
= 1

uniformly on R \ {0}. Hence there exists a constant β > 0 such that |f(x) −
Q(x)| ≤ βx2 for all x ∈ R. Since Q is quadratic, there exists a constant c ∈ R
such that Q(x) = cx2 for all rational numbers x. Therefore

(2.24) |f(x)| ≤ (β + |c|)x2

for all rational numbers x. Let m be an integer with mµ > β + |c|. If x is a
rational number in (0, α1−m), then αnx ∈ (0, 1) for all n = 0, 1, . . . ,m− 1. So

f(x) ≥
m−1∑
n=0

α−2nφ(αnx) = mµx2 > (β + |c|)x2

which contradicts (2.24).
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Variables, Birkhäuser, Basel, 1998.
[13] P. Jordan and J. von Neumann, On inner products in linear, metric spaces, Ann. of

Math. (2) 36 (1935), no. 3, 719–723.
[14] K. Jun and Y. Lee, On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic

inequality, Math. Inequal. Appl. 4 (2001), no. 1, 93–118.
[15] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical

Analysis, Hadronic Press, Inc., Palm Harbor, FL, 2001.



FUZZY STABILITY 417

[16] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math.
27 (1995), no. 3-4, 368–372.
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