• Title/Summary/Keyword: fuzzy rule-based system

Search Result 354, Processing Time 0.029 seconds

Uncertain Rule-based Fuzzy Technique: Nonsingleton Fuzzy Logic System for Corrupted Time Series Analysis

  • Kim, Dongwon;Park, Gwi-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.361-365
    • /
    • 2004
  • In this paper, we present the modeling of time series data which are corrupted by noise via nonsingleton fuzzy logic system. Nonsingleton fuzzy logic system (NFLS) is useful in cases where the available data are corrupted by noise. NFLS is a fuzzy system whose inputs are modeled as fuzzy number. The abilities of NFLS to approximate arbitrary functions, and to effectively deal with noise and uncertainty, are used to analyze corrupted time series data. In the simulation results, we compare the results of the NFLS approach with the results of using only a traditional fuzzy logic system.

A Multiple-Valued Fuzzy Approximate Analogical-Reasoning System

  • Turksen, I.B.;Guo, L.Z.;Smith, K.C.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1274-1276
    • /
    • 1993
  • We have designed a multiple-valued fuzzy Approximate Analogical-Reseaning system (AARS). The system uses a similarity measure of fuzzy sets and a threshold of similarity ST to determine whether a rule should be fired, with a Modification Function inferred from the Similarity Measure to deduce a consequent. Multiple-valued basic fuzzy blocks are used to construct the system. A description of the system is presented to illustrate the operation of the schema. The results of simulations show that the system can perform about 3.5 x 106 inferences per second. Finally, we compare the system with Yamakawa's chip which is based on the Compositional Rule of Inference (CRI) with Mamdani's implication.

  • PDF

Rule-Based Fuzzy Polynomial Neural Networks in Modeling Software Process Data

  • Park, Byoung-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.321-331
    • /
    • 2003
  • Experimental software datasets describing software projects in terms of their complexity and development time have been the subject of intensive modeling. A number of various modeling methodologies and modeling designs have been proposed including such approaches as neural networks, fuzzy, and fuzzy neural network models. In this study, we introduce the concept of the Rule-based fuzzy polynomial neural networks (RFPNN) as a hybrid modeling architecture and discuss its comprehensive design methodology. The development of the RFPNN dwells on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The architecture of the RFPNN results from a synergistic usage of RFNN and PNN. RFNN contribute to the formation of the premise part of the rule-based structure of the RFPNN. The consequence part of the RFPNN is designed using PNN. We discuss two kinds of RFPNN architectures and propose a comprehensive learning algorithm. In particular, it is shown that this network exhibits a dynamic structure. The experimental results include well-known software data such as the NASA dataset concerning software cost estimation and the one describing software modules of the Medical Imaging System (MIS).

Fuzzy Logic Based Auto Navigation System Using Dual Rule Evaluation Structure for Improving Driving Ability of a Mobile Robot (모바일 로봇의 주행 능력 향상을 위한 이중 룰 평가 구조의 퍼지 기반 자율 주행 알고리즘)

  • Park, Kiwon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.3
    • /
    • pp.387-400
    • /
    • 2015
  • A fuzzy logic based mobile robot navigation system was developed to improve the driving ability without trapping inside obstacles in complex terrains, which is one of the most concerns in robot navigation in unknown terrains. The navigation system utilizes the data from ultrasonic sensors to recognize the distances from obstacles and the position information from a GPS sensor. The fuzzy navigation system has two groups of behavior rules, and the robot chooses one of them based on the information from sensors while navigating for the targets. In plain terrains the robot with the proposed algorithm uses one rule group consisting of behavior rules for avoiding obstacle, target steering, and following edge of obstacle. Once trap is detected the robot uses the other rule group consisting of behavior rules strengthened for following edge of obstacle. The output signals from navigation system control the speed of two wheels of the robot through the fuzzy logic data process. The test was conducted in the Matlab based mobile robot simulator developed in this study, and the results show that escaping ability from obstacle is improved.

Design of a Rule Based Controller using Genetic Programming and Its Application to Fuzzy Logic Controller (유전 프로그래밍을 이용한 규칙 기반 제어기의 설계와 퍼지로직 제어기로의 응용)

  • 정일권;이주장
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.624-629
    • /
    • 1998
  • Evolutionary computation techniques can solve search problems using simulated evolution based on the ‘survival of the fittest’. Recently, the genetic programming (GP) which evolves computer programs using the genetic algorithm was introduced. In this paper, the genetic programming technique is used in order to design a rule based controller consisting of condition-action rules for an unknown system. No a priori knowledge about the structure of the controller is needed. Representation of a solution, functions and terminals in GP are analyzed, and a method of constructing a fuzzy logic controller using the obtained rule based controller is described. A simulation example using a nonlinear system shows the validity and efficiency of the proposed method.

  • PDF

Design of ECG Pattern Classification System Using Fuzzy-Neural Network (퍼지-뉴럴 네트워크를 이용한 심전도 패턴 분류시스템 설계)

  • 김민수;이승로;서희돈
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.273-276
    • /
    • 2002
  • This paper has design of ECG pattern classification system using decision of fuzzy IF-THEN rules and neural network. each fuzzy IF-THEN rule in our classification system has antecedent lingustic values and a single consequent class. we use a fuzzy reasoning method based on a single winner rule in the classification phase. this paper in, the MIT/BIH arrhythmia database for the source of input signal is used in order to evaluate the performance of the proposed system. From the simulation results, we can effectively pattern classification by application of learned from neural networks.

  • PDF

Fast Fuzzy Inference Algorithm for Fuzzy System constructed with Triangular Membership Functions (삼각형 소속함수로 구성된 퍼지시스템의 고속 퍼지추론 알고리즘)

  • Yoo, Byung-Kook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • Almost applications using fuzzy theory are based on the fuzzy inference. However fuzzy inference needs much time in calculation process for the fuzzy system with many input variables or many fuzzy labels defined on each variable. Inference time is dependent on the number of arithmetic Product in computation Process. Especially, the inference time is a primary constraint to fuzzy control applications using microprocessor or PC-based controller. In this paper, a simple fast fuzzy inference algorithm(FFIA), without loss of information, was proposed to reduce the inference time based on the fuzzy system with triangular membership functions in antecedent part of fuzzy rule. The proposed algorithm was induced by using partition of input state space and simple geometrical analysis. By using this scheme, we can take the same effect of the fuzzy rule reduction.

Weighted Fuzzy Reasoning Using Certainty Factors as Heuristic Information in Weighted Fuzzy Petri Net Representations (가중 퍼지 페트리네트 표현에서 경험정보로 확신도를 이용하는 가중 퍼지추론)

  • Lee, Moo-Eun;Lee, Dong-Eun;Cho, Sang-Yeop
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.4
    • /
    • pp.1-12
    • /
    • 2005
  • In general, other conventional researches propose the fuzzy Petri net-based fuzzy reasoning algorithms based on the exhaustive search algorithms. If it can allow the certainty factors representing in the fuzzy production rules to use as the heuristic information, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more effective manner. This paper presents a fuzzy Petri net(FPN) model to represent the fuzzy production rules of a rule-based system. Based on the fuzzy Petri net model, a weighted fuzzy reasoning algorithm is proposed to Perform the fuzzy reasoning automatically, This algorithm is more effective and more intelligent reasoning than other reasoning methods because it can perform fuzzy reasoning using the certainty factors which are provided by domain experts as heuristic information

  • PDF

Weighted Fuzzy Backward Reasoning Using Weighted Fuzzy Petri-Nets (가중 퍼지 페트리네트를 이용한 가중 퍼지 후진추론)

  • Cho Sang Yeop;Lee Dong En
    • Journal of Internet Computing and Services
    • /
    • v.5 no.4
    • /
    • pp.115-124
    • /
    • 2004
  • This paper presents a weighted fuzzy backward reasoning algorithm for rule-based systems based on weighted fuzzy Petri nets. The fuzzy production rules in the knowledge base of a rule-based system are modeled by weighted fuzzy Petri nets, where the truth values of the propositions appearing in the fuzzy production rules and the certainty factors of the rules are represented by fuzzy numbers. Furthermore, the weights of the propositions appearing in the rules are also represented by fuzzy numbers. The proposed weighted fuzzy backward reasoning generates the backward reasoning path from the goal node to the initial nodes and then evaluates the certainty factor of the goal node. The algorithm we proposed can allow the rule-based systems to perform weighted fuzzy backward reasoning in more flexible and human-like manner.

  • PDF

Interval-Valued Fuzzy Set Backward Reasoning Using Fuzzy Petri Nets (퍼지 페트리네트를 이용한 구간값 퍼지 집합 후진추론)

  • 조상엽;김기석
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.559-566
    • /
    • 2004
  • In general, the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions appearing in the rules are represented by real values between zero and one. If it can allow the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions to be represented by interval -valued fuzzy sets, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more flexible manner. This paper presents fuzzy Petri nets and proposes an interval-valued fuzzy backward reasoning algorithm for rule-based systems based on fuzzy Petri nets Fuzzy Petri nets model the fuzzy production rules in the knowledge base of a rule-based system, where the certainty factors of the fuzzy propositions appearing in the fuzzy production rules and the certainty factors of the rules are represented by interval-valued fuzzy sets. The algorithm we proposed generates the backward reasoning path from the goal node to the initial nodes and then evaluates the certainty factor of the goal node. The proposed interval-valued fuzzy backward reasoning algorithm can allow the rule-based systems to perform fuzzy backward reasoning in a more flexible and human-like manner.

  • PDF