Browse > Article
http://dx.doi.org/10.9717/kmms.2015.18.3.387

Fuzzy Logic Based Auto Navigation System Using Dual Rule Evaluation Structure for Improving Driving Ability of a Mobile Robot  

Park, Kiwon (Dept. of Green Automobile Engineering, School of Engineering Youngsan University)
Publication Information
Abstract
A fuzzy logic based mobile robot navigation system was developed to improve the driving ability without trapping inside obstacles in complex terrains, which is one of the most concerns in robot navigation in unknown terrains. The navigation system utilizes the data from ultrasonic sensors to recognize the distances from obstacles and the position information from a GPS sensor. The fuzzy navigation system has two groups of behavior rules, and the robot chooses one of them based on the information from sensors while navigating for the targets. In plain terrains the robot with the proposed algorithm uses one rule group consisting of behavior rules for avoiding obstacle, target steering, and following edge of obstacle. Once trap is detected the robot uses the other rule group consisting of behavior rules strengthened for following edge of obstacle. The output signals from navigation system control the speed of two wheels of the robot through the fuzzy logic data process. The test was conducted in the Matlab based mobile robot simulator developed in this study, and the results show that escaping ability from obstacle is improved.
Keywords
Robot Navigation; Fuzzy Systems; Fuzzy Logic Controller;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Rusu, E.M. Petriu, T.E. Whalen, A. Cornell, and H.J.W. Spoelder, “Behavior-Based Neuro-Fuzzy Controller for Mobile Robot Navigation,” IEEE Transaction on Instrumentation and Measurement, Vol. 52, No. 4, pp. 1335-1340, 2003.   DOI
2 K.H. Chen and W.H. Tsai, “Vision-Based Obstacle Detection and Avoidance for Autonomous Land Vehicle Navigation in Outdoor Roads,” Automation in Construction, Vol. 10, Issue 1, pp. 1-25, 2000.   DOI
3 S.G. Tzafestas and K.C. Zikidis, “A 3-level Neuro-fuzzy Autonomous Robot Navigation System,” Proceeding of IEEE International Conference on Fuzzy Systems, pp. 1626-1631, 1994.
4 H. Surmann, J. Huser, and L. Peters, “A Fuzzy System for Indoor Mobile Robot Navigation,” Proceeding of the Fourth IEEE International Conference on Fuzzy Systems, Vol. 1, pp. 83-86, 1995.
5 S. Thongchai, S. Suksakulchai, D.M. Wilkes, and N. Sarkar, “Sonar Behavior-Based Fuzzy Control for a Mobile Robot,” Proceeding of the IEEE International Conference on Systems, Man and Cybernetics, pp. 3532-3537, 2000.
6 M. Benreguieg, P. Hoppenot, H. Maaref, E. Colle, and C. Barret, “Control of a Medical Aid Mobile Robot based on a Fuzzy Navigation,” Proceeding of IEEE Symposium on Robotics and Cybernetics, pp. 388-393, 1996.
7 A.O. Djekoune, K. Achour, and R. Toumi, “A Sensor Based Navigation Algorithm for a Mobile Robot using the DVFF Approach,” International Journal of Advanced Robotic Systems, Vol. 6, No. 2, pp. 97-108, 2009.
8 E. Lim and K. Kim, “A Study on the Recognition of Car Plate using an Enhanced Fuzzy ART Algorithm,” Journal of Korea Multimedia Society, Vol. 3, No. 5, pp. 433-444, 2000.
9 A. Ramirez-Serrano and M. Boumedine, “Ultrasonic Sensing and Fuzzy Logic Control for Navigation in Unknown Static Environments,” Proceeding of Eurobot, pp. 54-59, 1996.
10 N. Zhang, D. Beetner, D.C. Wunsch II, B. Hemmelman, and A. Hasan, “An Embedded Real-time Neuro-fuzzy Controller for Mobile Robot Navigation,” Proceeding of IEEE International Conference on Fuzzy Systems, pp. 319-323, 2005.
11 V. Sezer and M. Gokasan, “A Novel Obstacle Avoidance Algorithm: Follow the Gap Method,” Robotics and Autonomous Systems, Vol. 60, Issue 9, pp. 1123-1134, 2012.   DOI
12 A. Yufka and O. Parlaktuna, “Performance Comparison of Bug Algorithms for Mobile Robots,” Proceeding of the 5th International Advanced Technology Symposium, pp. 61-65, 2009.
13 A. Sgorbissa and R. Zaccaria, “Planning and Obstacle Avoidance in Mobile Robotics,” Robotics and Autonomous Systems, Vol. 60, Issue 4, pp. 628-638, 2012.   DOI
14 J. Oroko and B. Ikua, “Obstacle Avoidance and Path Planning Schemes for Autonomous Navigation of a Mobile Robot: A Review,” Proceeding of Mechanical Engineering Conference on Sustainable Research and Innovation, pp. 314-318, 2012.
15 G. Li, A. Yamashita, H. Asama, and Y. Tamura, “An Effect Improved Artificial Potential Field Based Regression Search Method for Robot Path Planning,” Proceeding of International Conference on Mechatronics and Automation, pp. 1227-1232, 2012.
16 Y. Zhu, T. Zhang, J. Song, and X. Li, “A New Hybrid Navigation Algorithm for Mobile Robots in Environments with Incomplete Knowledge,” Knoledge-Based Systems, Vol. 27, Issue 1, pp. 302-313, 2012.   DOI
17 F. Kabanza and K.B. Lamine, “Specifying Failure and Progress Conditions in a Behavior-Based Robot Programming System,” Proceeding of the 4th International Cognitive Robotics Workshop, pp. 11-16, 2004.
18 A. Saffiotti, E.H. Ruspini, and Konolige, Chapter 5 of the International H andbook of Fuzzy Sets, Kluwer Academic Publishers, Netherlands, 1999.
19 W. Li, “Fuzzy Logic-Based ‘Perception-Action’ Behavior Control of Mobile Robot in Uncertain Environments,” Proceeding of IEEE International Conference on Fuzzy Systems, Vol. 3, pp. 1626-1631, 1994.
20 K. Song and J. Tai, “Fuzzy Navigation of a Mobile Robot,” Proceeding of IEEE International Conference on Intelligent Robots and Systems, Vol. 1, pp. 621-627, 1992.   DOI