DOI QR코드

DOI QR Code

Fast Fuzzy Inference Algorithm for Fuzzy System constructed with Triangular Membership Functions

삼각형 소속함수로 구성된 퍼지시스템의 고속 퍼지추론 알고리즘

  • 유병국 (한려대학교 멀티미디어정보통신공학과)
  • Published : 2002.02.01

Abstract

Almost applications using fuzzy theory are based on the fuzzy inference. However fuzzy inference needs much time in calculation process for the fuzzy system with many input variables or many fuzzy labels defined on each variable. Inference time is dependent on the number of arithmetic Product in computation Process. Especially, the inference time is a primary constraint to fuzzy control applications using microprocessor or PC-based controller. In this paper, a simple fast fuzzy inference algorithm(FFIA), without loss of information, was proposed to reduce the inference time based on the fuzzy system with triangular membership functions in antecedent part of fuzzy rule. The proposed algorithm was induced by using partition of input state space and simple geometrical analysis. By using this scheme, we can take the same effect of the fuzzy rule reduction.

퍼지이론의 응용은 대부분 퍼지추론을 이용하는 것이다. 그러나 퍼지추론은 입력변수의 수가 많아지거나 각 입력변수에 많은 수의 퍼지라벨을 설정할 경우 그 추론에 필요한 계산시간이 많아지게 되며 이러한 것은 컴퓨터 연산의 대수곱(arithmetic product)의 수에 의해 결정된다. 더구나 퍼지추론의 응용이 가장 활발한 퍼지제어분야에서는 이러한 추론시간은 실제 시스템에 적용 시 가장 큰 제약조건이 된다. 특히, 마이크로프로세서를 이용하거나 PC-based 제어기를 설계할 때 이러한 추론시간은 매우 중요한 문제가 된다. 본 논문에서는 이러한 추론시간을 효율적으로 줄이기 위해, 즉 추론 시 필요로 하는 곱 연산의 수를 줄이기 위하여 삼각형 소속함수를 이용하는 퍼지시스템에 적용 가능하며 정보의 손실이 발생되지 않는 간단한 고속 퍼지추론 알고리즘을 제안한다. 이것은 퍼지추론 시 입력상태공간의 분할과 간단한 기하학적 해석을 통해 얻어지는 것이며 결과적으로 퍼지규칙의 수를 줄이는 것과 같다.

Keywords

References

  1. C. C. Lee, "Fuzzy logic in control system : Fuzzy logic controller-Part I, II," IEEE Trans. on Systems,Man, and Cybernetics, vol. SMC-20, no. 2, pp. 404-435, 1990.
  2. H.J.Zimmermann, "Fuzzy set theory and its applications," Kluwcr Academic Publishers, 1991.
  3. T. Takagi and M. Sugeno, "Fuzzy identification of systems and its application to modeling and control," IEEE Trans. on Syst, Man, and Cybern., vol. 15, pp. 116-132, Jan. 1985.
  4. L. X. Wang, "Adaptive fuzzy systems and control : design and stability analysis," Prentice Hall, 1994.
  5. L. X. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least squares leaming," IEEE Transactions on Neural Networks" vol. 3, no. 5, pp. 807-814, 1992. https://doi.org/10.1109/72.159070
  6. L. X. Wang, "Stable adaptive control of nonlinear system," IEEE. Trans. on Fuzzy Systems, vol. 1, no. 2, 1993
  7. B. K. Yoo and W. C. Ham, Adaptive fuzzy sliding mode control of nonlinear system, IEEE Trans. on Fuzzy Systems, vol. 6, no. 2, pp. 315-321, 1998. https://doi.org/10.1109/91.669032
  8. B. K. Yoo and W. C. Ham, Adaptive conirol of robot manipulator using fuzzy compensator, IEEE Trans. on Fuzzy Systems, vol. 8, no. 2, pp. 186-199, 2000. https://doi.org/10.1109/91.842152
  9. L. T. Koczy and KHirota, "Size reduction by interpolation in fuzzy rule base," IEEE Trcms. System, Man. and Cybernetics-Part B: Cybernetics, vol. 27, no.1, 1997.
  10. Y. Yam, P. Baranyi and C. T. Yang, "Reduction of fuzzy rule base via singular value decomposition," IEEE Trans. Fuzzy Systems, vol. 7, no. 2, 1999.
  11. S. Galichet and L. Foulloy, "Size reduction in fuzzy rulebases," Proc. of IEEE International Conference on Systems, Man, and Cybernetics, Califomia, USA, vol 3, pp. 2107-2112, 1998.
  12. G. Castellano and A. M. Fanelli, "A neuro-fuzzy model reduction strategy," Proc. of International Conf. on Neural Networks(ICNN'97), Texas, USA, vol. 1, 1997.
  13. J. Yen and L. Wang, "Simplifying fuzzy rule-based models using orthogonal transformation methods," IEEE Trans. System, Man, and Cybernetics-Part B:Cybemetics, vol. 29, no. 1, 1999.