• Title/Summary/Keyword: fuzzy observer

Search Result 179, Processing Time 0.023 seconds

Control of Servo System with Fuzzy Observer (Fuzzy Observer를 이용한 서보 시스템의 제어)

  • Ryu, Je-Young;Park, Eik-Dong;Huh, Uk-Youl;Lee, Je-Hi
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2461-2463
    • /
    • 2000
  • This paper presents a scheme for designing a fuzzy observer for servo control system with nonlinear element, i.e., backlash. It is found that backlash occurs when the feed direction is reversed. Due to the imperfect transient response of the driving mechanism, not only the static backlash error but also the dynamic backlash error is generated on the contouring profile. And also, we utilized two inertia modeling in order to deals with coupled system accurately. The overall control system consists of two parts - a servo controller and an Fuzzy obsever. It is a Takagi-sugeno type fuzzy model whose consequent part is of the state space form is obtained. A simulation is carried out to demonstrate the effectiveness of the proposed scheme.

  • PDF

Fuzzy Disturbance Observer based Multiple Sliding Surface Control of Nonlinear Systems with Mismatched Disturbance (부정합조건 외란을 갖는 비선형 시스템의 퍼지 외란 관측기 기반 다중 슬라이딩 평면 제어)

  • Lee, Sang-Yun;Seo, Hyungkeun;Hyun, Chang-Ho;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.385-391
    • /
    • 2014
  • This paper proposes fuzzy disturbance observer based multiple sliding surface control scheme for nonlinear systems with mismatched disturbance. In order to stabilize nonlinear systems with mismatched disturbance, a controller based on multiple sliding surface control scheme is designed. In addition, a fuzzy disturbance observer is used to estimate the disturbance. Using the fuzzy disturbance observer, "explosion of terms" problem and chattering problem were solved. The stability of the proposed control scheme is analyzed by Lyapunov stability theory. For the verification, we apply the proposed method to numerical examples and compare its result with that of the applied nonlinear disturbance observer based sliding mode control.

Observer-Based Output Feedback Stochastic Stabilization for T-S Fuzzy Systems with Input Delay (입력지연을 갖는 T-S 퍼지 시스템의 관측기기반 출력궤환 확률적 안정화)

  • Lee, Sang In;Park, Jin Bae;Joo, Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.298-303
    • /
    • 2004
  • This paper deals with a stochastic stabilization of observer-based output-feedback control Takagi-Sugeno (T-S) fuzzy system with Markovian input delay. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretized T-S fuzzy system is represented by a discrete-time T-S fuzzy system with jumping parameters. The stochastic stabilizability of the jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs). The usefulness of the proposed algorithm is also certificated by simulation of 2 degree of freedom helicopter model.

Intelligent Decentralized Observer Design for Discrete-Time Nonlinear Interconnected Systems (이산시간 비선형 상호결합 시스템을 위한 지능형 분산 관측기 설계)

  • Koo, Geun Bum
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.15-21
    • /
    • 2017
  • In this paper, the decentralized fuzzy observer design technique is presented for discrete-time nonlinear interconnected systems, which are assumed to be with unknown interconnections. To design the decentralized fuzzy observer, the design problem is considered and the performance function is defined to solve the design problem. Based on the performance function, the sufficient condition is derived for the observer design, and its condition is formulated into linear matrix inequalities. Finally, by the simulation result, the validity of the proposed observer design technique is shown.

Robust Position Control for PMLSM Using Friction Parameter Observer and Adaptive Recurrent Fuzzy Neural Network (마찰변수 관측기와 적응순환형 퍼지신경망을 이용한 PMLSM의 강인한 위치제어)

  • Han, Seong-Ik;Rye, Dae-Yeon;Kim, Sae-Han;Lee, Kwon-Soon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.241-250
    • /
    • 2010
  • A recurrent adaptive model-free intelligent control with a friction estimation law is proposed to enhance the positioning performance of the mover in PMLSM system. For the PMLSM with nonlinear friction and uncertainty, an adaptive recurrent fuzzy neural network(ARFNN) and compensated control law in $H_{\infty}$ performance criterion are designed to mimic a perfect control law and compensate the approximated error between ideal controller and ARFNN. Combined with friction observer to estimate nonlinear friction parameters of the LuGre model, on-line adaptive laws of the controller and observer are derived based on the Lyapunov stability criterion. To analyze the effectiveness our control scheme, some simulations for the PMLSM with nonlinear friction and uncertainty were executed.

Design of Optimal Idle Speed Controller by Sliding Mode Observer (슬라이딩 모드 관측기에 의한 최적의 공회전 제어기 설계)

  • Lee, Young-Choon;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.161-167
    • /
    • 2001
  • This paper presents an approach to nonlinear engine idle controller and intake manifold absolute pressure(MAP) observer based on mean torque production model. A stable engine idle speed is important in that the unstable engine Idle mode can make engine to drooping or stall state. A sliding fuzzy controller has been designed to control engine idle speed under load disturbance. A sliding observer is also developed to estimate the intake manifold absolute pressure and compared with the actual MAP sensor value. The sliding mode observer has shown good robustness and good tracking performance. The inputs of sliding fuzzy controller are the errors of rpm and MAP. The output is a duty cycle(DC) for driving a idle speed control valve(ISCV).

  • PDF

Antl-Lock Brake System Control for Buses Based on Fuzzy Logic and a Sliding-Mode Observer

  • Park, Jong-Hyeon;Kim, Dong-Hee;Kim, Yong-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1398-1407
    • /
    • 2001
  • In this paper an anti-lock brake system (ABS) for commercial buses is proposed based on a fuzzy-logic controller and a sliding-mode observer of the vehicle speed. The brake controller generates pulse width modulated (PWM) control inputs to the solenoid valve of each brake, as a function of the estimated wheel slip ratio. PWM control inputs at the brakes significantly reduce chattering in the brake system compared with conventional on-off control inputs. The sliding-mode observer estimates the vehicle speed with measurements of wheel speed, which is then sed to compute the wheel slip ratio. The effectiveness of the proposed control algorithm is validated by a series of computer simulations of bus driving, where the 14-DOF bus model is used.

  • PDF

Fuzzy back-EMF Observer for Improving Performance of Sensorless brushless DC motor drive (BLDC 전동기용 센서리스 드라이브의 성능 향상을 위한 퍼지 역기전력 관측기)

  • Park, Byoung-Gun;Kim, Tae-Sung;Ryu, Ji-Su;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.220-223
    • /
    • 2005
  • In this paper, a novel sensorless brushless DC (BLDC) motor drive method using the fuzzy back-EMF observer is proposed to improve the performance of conventional sensorless drive methods. Most existing back-EMF sensing methods need additional circuit and have a low performance intransient state or low speed range. Therefore, this paper proposes the fuzzy back-EMF observer and an algorithm using this observer to estimate a speed and a position of the rotor. The robustness of the proposed algorithm is proved through the simulation compared with other sensorless drive methods.

  • PDF

Adaptive Fuzzy Control Based on Observer for Nonlinear HVAC System (관측기를 이용한 비선형 HVAC 시스템의 적응 퍼지 제어)

  • Baek, Jae-Ho;Hwang, Eun-Ju;Kim, Eun-Tai;Park, Mig-Non
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1081-1082
    • /
    • 2008
  • This paper presents adaptive fuzzy control based on observer for nonlinear HVAC system whose states are not available. Fuzzy systems are employed to approximate the unknown nonlinear functions of the HVAC system and the state observer is designed for estimating the states of the HVAC system. An adaptive fuzzy controller is firstly constructed without the controller singularity problem. The obtained control system shows robustness and effectiveness compared with classical feedback controller. Simulation results are provided to illustrate the control performance.

  • PDF

SPEED CONTROL FOR ULTRASONIC MOTORS USING FUZZY ON-LINE TUNING SYSTEM

  • Senjyu, Tomonobu;Gushiken, Yoshiniko;Uezato, Katsumi
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.125-130
    • /
    • 1998
  • This paper presents a speed control for ultrasonic motors using a PI controller and disturbance torque observer. Since the PI gains and the observer's poles are generally fixed, the control performance deteriorates when the driving conditions vary much. Therefore, we propose the speed control scheme that the PI gains and the observer's poles are adjusted on-line in accordance with the speed ripple using fuzzy reasoning.

  • PDF