DOI QR코드

DOI QR Code

Fuzzy Disturbance Observer based Multiple Sliding Surface Control of Nonlinear Systems with Mismatched Disturbance

부정합조건 외란을 갖는 비선형 시스템의 퍼지 외란 관측기 기반 다중 슬라이딩 평면 제어

  • Lee, Sang-Yun (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Seo, Hyungkeun (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Hyun, Chang-Ho (Division of Electrical Electronic and Control Engineering, Kongju National University) ;
  • Park, Mignon (School of Electrical and Electronic Engineering, Yonsei University)
  • 이상윤 (연세대학교 전기전자공학과) ;
  • 서형근 (연세대학교 전기전자공학과) ;
  • 현창호 (공주대학교 전기전자제어공학부) ;
  • 박민용 (연세대학교 전기전자공학과)
  • Received : 2014.05.21
  • Accepted : 2014.06.16
  • Published : 2014.08.25

Abstract

This paper proposes fuzzy disturbance observer based multiple sliding surface control scheme for nonlinear systems with mismatched disturbance. In order to stabilize nonlinear systems with mismatched disturbance, a controller based on multiple sliding surface control scheme is designed. In addition, a fuzzy disturbance observer is used to estimate the disturbance. Using the fuzzy disturbance observer, "explosion of terms" problem and chattering problem were solved. The stability of the proposed control scheme is analyzed by Lyapunov stability theory. For the verification, we apply the proposed method to numerical examples and compare its result with that of the applied nonlinear disturbance observer based sliding mode control.

본 논문은 부정합조건 외란을 갖는 비선형 시스템을 제어하기 위하여 퍼지 외란 관측기 기반 다중 슬라이딩 평면 제어 기법을 제안한다. 부정합조건에서도 제어 대상이 평형점으로 수렴할 수 있도록 다중 슬라이딩 평면 기법을 사용하여 제어기를 설계한다. 더불어, 퍼지 외란 관측기를 도입함으로써 다중 슬라이딩 평면 제어의 문제점인 항의 복잡성 (Explosion of terms)을 해결하고, 기존 슬라이딩 모드 제어 상에서 불연속 신호를 사용해서 일어나는 채터링(Chattering)을 제거한다. 제안된 시스템의 안정성은 리아프노브 안정성 이론을 이용하여 증명한다. 제안한 방법의 성능 우수성을 보이기 위해 모의실험을 통하여 비선형 외란 관측기 기반 슬라이딩 모드 제어기의 성능과 비교 분석한다.

Keywords

References

  1. X. Yu and O. Kaynak, "Sliding-mode control with soft computing: A survey," IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3275-3285, Sep. 2009. https://doi.org/10.1109/TIE.2009.2027531
  2. X. Yu, B. Wang, and X. Li, "Computer-controlled variable structure systems: The state of the art," IEEE Trans. Ind. Informat., DOI: 10.1109/TII.2011.2178249.
  3. H. H. Choi, "LMI-based sliding surface design for integral sliding model control of mismatched uncertain systems," IEEE Trans. Autom. Control, vol. 52, no. 4, pp. 736-742, Apr. 2007. https://doi.org/10.1109/TAC.2007.894543
  4. J. Yang, A. Zolotas, W.-H. Chen, K. Michail, and S. Li, "Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach," ISA Trans., vol. 50, no. 3, pp. 389-396, Jul. 2011. https://doi.org/10.1016/j.isatra.2011.01.006
  5. W.-H. Chen, "Nonlinear disturbance observer- enhanced dynamic inversion control of missiles," J. Guid. Control Dyn., vol. 26, no. 1, pp. 161-166, Jan./Feb. 2003. https://doi.org/10.2514/2.5027
  6. Yang, Jun, W-H. Chen, and Shihua Li. "Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties." IET control theory & applications 5.18 (2011): 2053-2062. https://doi.org/10.1049/iet-cta.2010.0616
  7. Yang, Jun, et al. "Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances." Automatica 49.7 (2013): 2287-2291. https://doi.org/10.1016/j.automatica.2013.03.026
  8. Yang, Jun, Shihua Li, and Xinghuo Yu. "Sliding-mode control for systems with mismatched uncertainties via a disturbance observer." Industrial Electronics, IEEE Transactions on 60.1 (2013): 160-169. https://doi.org/10.1109/TIE.2012.2183841
  9. Q. Hu, "Robust integral variable structure controller and pulse-width pulse-frequency modulated input shaper design for flexible spacecraft with mismatched uncertainty/disturbance," ISA Trans., vol. 46, no. 4, pp. 505-518, Oct. 2007. https://doi.org/10.1016/j.isatra.2007.05.002
  10. Q. Hu, L. Xie, Y. Wang, and C. Du, "Robust tracking- following control of hard disk drives using improved integral sliding mode combined with phase lead peak filter," Int. J. Adapt. Control Signal Process., vol. 22, no. 4, pp. 413-430, May 2008. https://doi.org/10.1002/acs.995
  11. W.-J. Cao and J.-X. Xu, "Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems," IEEE Trans. Autom. Control, vol. 49, no. 8, pp. 1355-1360, Aug. 2004. https://doi.org/10.1109/TAC.2004.832658
  12. Won, Mooncheol, and J. Karl Hedrick. "Multiple-surface sliding control of a class of uncertain nonlinear systemsm." International Journal of Control 64.4 (1996): 693-706. https://doi.org/10.1080/00207179608921650
  13. Hedrick, J. K., and P. P. Yip. "Multiple sliding surface control: theory and application." Journal of dynamic systems, measurement, and control 122.4 (2000): 586-593. https://doi.org/10.1115/1.1321268
  14. Tsai, Yi-Chang, and An-Chyau Huang. "Multiple-surface sliding controller design for pneumatic servo systems." Mechatronics 18.9 (2008): 506-512. https://doi.org/10.1016/j.mechatronics.2008.03.006
  15. Bongsob Song, J. Karl Hedrick, Dynamic Surface control of uncertain nonlinear system, Springer, 2011.
  16. E. Kim, "A Fuzzy Disturbance Observer and Its Application to Control," IEEE Trans. Fuzzy Syst., vol. 10, no. 1, pp. 77-84, Feb 2002. https://doi.org/10.1109/91.983280