• Title/Summary/Keyword: fuzzy logic model and control

Search Result 353, Processing Time 0.028 seconds

Fuzzy Logic Modeling and Control for Drilling of Composite Laminates ; Simulation

  • Chung, Byeong-Mook;Ye Sheng;Masayoshi Tomizuka
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 2001
  • In drilling of composite laminates, it is important to minimize of reduce occurrences of delaminations. In particular, a peel -up delamination at entrance and push-up delamination at exit are common. Deleaminations may by avoided by regulating the drill thrust force can be controlled by adjusting the feedrate of the drill. Dynamics involved in drilling of composite laminates is time varying and nonlinear. In this paper, a fuzzy logic model and control strategy are proposed. Simulation results show that the fuzzy model can describe the nonlinear time-varying process well. The fuzzy controller realizes a fast rise time and a little overshoot of drilling force.

  • PDF

Fuzzy Servo Design for Electromechanical System

  • Lee, Han-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.79-85
    • /
    • 1995
  • In this paper, a fuzzy logic is applied to a model-following control(MFC) to form a fuzzy model following control(FMFC). The feedback gain the MFC is adjusted continuously through the fuzzy logic rule. The proposed fuzzy-MFC is applied to synthesize controllers for linear time inveriant(LTI) systems with parameter uncertainties, and the robustness results of the proposed designs are compared.

  • PDF

Design of a Fuzzy Logic Controller Using Response Surface Methodology (반응표면분석법을 이용한 퍼지제어기의 설계)

  • 김동철;이세헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.225-228
    • /
    • 2002
  • When the fuzzy logic controller (FLC), which is designed based on the plant model, is applied to the real control system, satisfactory control performance may not be attained due to modeling errors from the plant model. In such cases, the control parameters of the controller must be adjusted to enhance control performance. Until now, the trial and error method has been used, consuming much time and effort. To resolve such problem, response surface methodology (RSM), a new method of adjusting the control parameters of the controller, is suggested. This method is more systematic than the previous trial and error method, and thus optimal solutions can be provided with less tuning. First, the initial values of the control parameters were determined through the plant model and the optimization algorithm. Then, designed experiments were performed in the region around the initial values, determining the optimal values of the control parameters which satisfy both the rise time and overshoot simultaneously.

  • PDF

Optimal Learning of Fuzzy Neural Network Using Particle Swarm Optimization Algorithm

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.421-426
    • /
    • 2005
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes particle swarm optimization algorithm based optimal learning fuzzy-neural network (PSOA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by particle swarm optimization algorithm. The learning algorithm of the PSOA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, particle swarm optimization algorithm is used for tuning of membership functions of the proposed model.

  • PDF

Speed Sensorless Control of an Induction Motor using Fuzzy Speed Estimator (퍼지 속도 추정기를 이용한 유도전동기 속도 센서리스 제어)

  • Choi, Sung-Dae;Kim, Lark-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.183-187
    • /
    • 2007
  • This paper proposes Fuzzy Speed Estimator using Fuzzy Logic Controller(FLC) as a adaptive law in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. Fuzzy Speed Estimator estimates the speed of an induction motor with a rotor flux of the reference model and the adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error of the rotor flux as the input of FLC. The experiment is executed to verify the propriety and the effectiveness of the proposed speed estimator.

Design of a Re-adhesion Controller using Fuzzy Logic with Estimated Adhesion Force Coefficient for Wheeled Robot (점착력 계수 추정을 이용한 이동 로봇의 퍼지 재점착 제어기 설계)

  • Kwon, Sun-Ku;Huh, Uk-Youl;Kim, Jin-Hwhan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.620-622
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has a slip state. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. First of all, this paper shows that conventional PI control can not be applied to a wheeled robot of the light weigh. Secondly, reposed fuzzy logic applied by the Takagi-Sugeno model for the configuration of fuzzy sets. For the design of Takaki-Sugeno model and fuzzy rule, proposed algorithm uses FCM(Fuzzy c-mean clustering method) algorithm. In additionally, this algorithm controls recovered driving torque for the restrain the re-slip. The proposed fuzzy logic controller(FLC) is pretty useful with prevention of the slip phenomena through that compare fuzzy with PI control for the controller performance in the re-adhesion control strategy. These procedures are implemented using a Pioneer 2-DXE wheeled robot parameter.

  • PDF

Optimal Learning of Neo-Fuzzy Structure Using Bacteria Foraging Optimization

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1716-1722
    • /
    • 2005
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes bacteria foraging algorithm based optimal learning fuzzy-neural network (BA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by bacteria foraging algorithm. The learning algorithm of the BA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, bacteria foraging algorithm is used for tuning of membership functions of the proposed model.

  • PDF

Fuzzy Logic Control for a Simplified Trawl System (간략화된 트롤 시스템의 퍼지제어)

  • 이춘우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.189-198
    • /
    • 1994
  • This paper describes the model of a simplified trawl system and a control method by using fuzzy algorithm in controlling the depth of trawl gear. Fuzzy logic control rules are sets of linguistic expression that are used by an experienced performer in real operation. For real time processing of the control rules, the look-up tables are used. Computer simulation results indicate that the proposed fuzzy controller shows fast response with minimum steady-state error and robustness properties to the simulated disturbance.

  • PDF

Adaptive Fuzzy Sliding Mode Control for Uncertain Nonlinear Systems

  • Seo, Sam-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • This paper deals with a new adaptive fuzzy sliding mode controller and its application to an inverted pendulum. We propose a new method of adaptive fuzzy sliding mode control scheme that the fuzzy logic system is used to approximate the unknown system functions in designing the SMC of uncertain nonlinear systems. The controller's construction and its analysis involve sliding modes. The proposed controller consists of two components. Sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum. The results show that both alleviation of chattering and performance are achieved.

A study on the trajectory controllable minimum-time controller using modified bang-bang control law (뱅뱅 제어법을 변형한 중간 경로 제동이 가능한 최단시간 제어기의 개발)

  • 이현오;양우석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.44-47
    • /
    • 1996
  • Bang-bang control law provides the optimal solution for a minimum-time control problem, but ignores the intermediate path except for the initial and final points. In this paper, a near minimum-time suboptimal fuzzy logic controller is introduced that can control the intermediate path. A dynamic model for a system is established using the average dynamics method of linearization. System model is continuously updated over the control time periods. This makes it suitable for high speed or variable payload applications. Bang-bang control theory is modified and used to derive the preliminary control law. A fuzzy logic algorithm is then applied to adjust and find the best solution. The solution will provide the suboptimal minimum-time control law which can avoid obstacles in the workspace.

  • PDF