
 

 
1. Introduction 

 
Some researchers suggest a model of fuzzy neuron that 

linear synaptic connections can be replaced with a nonlinearity 
characterized by a membership function and a fuzzy neural 
network model [1], [2]. The nonlinear characteristics of which 
are represented by fuzzy if-then rules with complementary 
membership functions. Since neo fuzzy neuron model or fuzzy 
neural network can have a good ability to describe a nonlinear 
relationship between multi-inputs and multi-output as well as 
its short leaning time compared with a conventional neural 
network, they are expecting as future linguistic tool for 
intelligence or soft computing. On the other hand, radial basis 
function networks (RBFNs) and back propagation neural 
networks (BPNNS) have yielded useful results in many 
practical areas such as pattern recognition, system 
identification and control, due primarily to their simple 
structures for realization and well established training 
algorithms. Many fuzzy paradigms, meanwhile, have been 
studied is recent years by viewing a fuzzy logic system (FLS) 
as a functionally equivalent RBFN or BPNN. As indicated in 
some papers [3], [4], the most important advantage of such an 
FLS spanned by fuzzy basic functions is the provision of a 
natural framework for combining numerical values and 
linguistic symbols in a uniform way. From a mathematical 
point of view, the input-output expressions of those mappings 
are identical in spite of the distinct inference procedure. 
Capability discrimination between neural and fuzzy system is 
thus diminished for proofs of universal neural/fuzzy 
approximators. Using neural networks or fuzzy systems to 
approximate a given plant or to control a process flow depends 
on whether rich available data are at hand or whether the 
'If-Then' control heuristics could be established by human 
experts familiar with system dynamics under consideration. A  

 

 
simple sigmoidal-like neuron is employed as a preassigned 

algorithm of the law of structural change which is directed by 
the current value of the error signal. However, in case of 
almost fuzzy logic, fuzzy-neural network, grade of 
membership and weighting function must be tuned by an 
approximation or experience-based tuning method. Some 
papers are written with a couple of objectives to demonstrate 
that genetic algorithms (GAs) are an efficient and robust tool 
for generating fuzzy rules and weighting function. GAs can 
construct a set of fuzzy rules that optimize multiple criteria [5]. 
An important observation that the rules searched by GAs are 
randomly scattered is made and a solution to this problem is 
provided by including a smoothness cost in the objective 
function.  

On the other hand, as natural selection tends to eliminate 
animals with poor foraging strategies through methods for 
locating, handling, and ingesting food and favor the 
propagation of genes of those animals that have successful 
foraging strategies, they are more likely to apply reproductive 
success to have an optimal solution. Optimization models are 
also valid for social foraging where groups of animals 
communicate to cooperatively forage. Foraging can be 
modeled as an optimization process where an animal seeks to 
maximize the energy obtained per unit time spent foraging. 
Generally, a foraging strategy involves finding a patch of food 
(e.g., group of bushes with berries), deciding whether to enter 
it and search for food, and when to leave the patch. There are 
predators and risks, energy required for travel, and 
physiological constraints (sensing, memory, cognitive 
capabilities). Foraging scenarios can be modeled and optimal 
policies can be found using, for instance, dynamic 
programming. Search and optimal foraging decision-making 
of animals can be broken into three basic types: cruise (e.g., 
tunafish, hawks), saltatory (e.g., birds, fish, lizards, and 
insects), and ambush (e.g., snakes, lions). While to perform 
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social foraging an animal needs communication capabilities, it 
can gain advantages in that it can exploit essentially the 
sensing capabilities of the group, the group can gang-up on 
large prey, individuals can obtain protection from predators 
while in a group, and in a certain sense the group can forage 
with a type of collective intelligence. Social foragers include 
birds, bees, fish, ants, wild beasts, and primates. Generally, 
endowing each forager with more capabilities can help them 
succeed in foraging, both as an individual and as a group. 
From an engineering perspective, both ends of such a 
spectrum are interesting.  
This paper proposes bacterial foraging based optimal 

learning approach of fuzzy-neural. The first phase of the 
BA-FNN is to find the initial membership functions of the 
fuzzy neural network model and the second phase is to obtain 
optimal membership functions of the proposed model by 
bacteria foraging algorithm. 
 
2. Structure of a Bacteria Foraging Algorithm Based 

Fuzzy-Neural Network  
 

The structure of BA-FNN is shown in Fig. 1 [3] and the 
output of the FNN part of BA-FNN can be represented by the 
following equation (1). 

 In Fig. 1 and Equation (1), the input space ix  is divided 
into several fuzzy segments which are characterized by 
membership functions inii µµµ ,...,, 21  within the range 
between minx  and maxx . The grade of membership 

function is also given as numbers assigned to labels of fuzzy 
membership function. The membership functions are followed 

by variable weights ....,1 ini ww  Mapping from ix  to 
)( ii xf is determined by fuzzy inferences and fuzzy rule is 

defined as Equation (2). 
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Fig. 1. The structure of bacteria algorithm based optimal 

learning fuzzy-neural network. 
 

∑
=

=

+++=
m

i
ii

mm

xf

xfxfxfy

1

2211

)(

)(...)()(

          (1) 

xnyxnini
n

xyxii

wCthenAisxIfR

wCthenAisxIfR

=

•
•
•

=

:

: 111
1

      (2) 
 
As the fuzzy inferences adopted here is that of a singleton 

consequent, each weight ijw
is a deterministic value such as 

0.8, 0.9. It should be emphasized that each 
membership function in antecedent is triangular and assigned 
to be complementary (so called by the authors) with 
neighbouring ones. In other words, an input signal 

ix
activates only two membership functions simultaneously 

and the sum of grades of these two neighbouring membership 
functions labelled by k and k+1 is always equal to 1, that 

is 
.1)()( 1,, =+ + ikiiki xx µµ

 So, the output of the fuzzy 
neural network can be represented by the following simple 
Equation (3).   
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In this Equation, the weight ijw
are assigned by learning 

the rule of which is described by n if-then rules. That is, If 

input ix  lies in the fuzzy segment ijµ
, then the 

corresponding weight ijw should be increased directly 

proportional to the output error (y- y ), because the error is 
caused by the weight. This proposition can be represented by 
the following equation; 

 
11 )()()( +++= xiixixiixiii wxwxxf µµ           (4) 

 
The learning procedure is the incremental change of 

weights for each input pattern. That is, the incremental change 
of minimizing the squared error (4) is obtained from  

 
( ) ( ))1()(2)1( −−+−=+∆ twtwyytw xixiixixi αµδ   (5) 

 
In this learning algorithm, all the initial weights are 

assigned to be zero and the updating of the weights is achieved 
after calculation of cumulative value in Equation (5). 

Where, y is the given data, y  is the output of model, 
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δ learning rate, α  is momentum constant and αδ ,  have 
the range of 0 to 1, respectively. The xiw  is the present 
weighting function and )1( −twxi  is the previous weighting 
function. 

 
3. Behavior Characteristics and Modeling of 

Bacteria Foraging 
3.1 Over view of Chemotactic Behavior of E. coli.  

This paper considers the foraging behavior of E. coli, which 
is a common type of bacteria as in reference 12. Its behavior to 
move comes from a set of up to six rigid 100–200 rps spinning 
flagella, each driven as a biological motor. An E. coli 
bacterium alternates between running and tumbling. Running 
speed is 10–20 sec/mµ , but they cannot swim straight. When 
we can summarize the chemotactic actions of bacteria as the 
following description:  

- If in neutral medium, alternate tumbles and runs, its action 
is having search.  

- If swimming up a nutrient gradient (or out of noxious 
substances), swim longer (climb up nutrient gradient or down 
noxious gradient)its behavior seeks increasingly favorable 
environments.  

- If swimming down a nutrient gradient (or up noxious 
substance gradient), then search action is avoiding unfavorable 
environments. 

So, it can climb up nutrient hills and at the same time avoid 
noxious substances. The sensors it needs for optimal 
resolution are receptor proteins which are very sensitive and 
high gain. That is, a small change in the concentration of 
nutrients can cause a significant change in behavior. This is 
probably the best-understood sensory and decision-making 
system in biology. Mutations in E. coli affect the reproductive 
efficiency at different temperatures, and occur at a rate of 

about 
710− per gene and per generation. E. coli occasionally 

engages in a conjugation that affects the characteristics of a 
population of bacteria. Since there are many types of taxes that 
are used by bacteria such as, aerotaxis (it are attracted to 
oxygen), light (phototaxis), temperature (thermotaxis), 
magnetotaxis (it it can be affected by magnetic lines of flux. 
Bacteria can form intricate stable spatio-temporal patterns in 
certain semisolid nutrient substances. They can eat radially 
their way through a medium if placed together initially at its 
center. Moreover, under certain conditions, they will secrete 
cell-to-cell attractant signals so that they will group and 
protect each other. These bacteria can swarm. 

 
3.2 Optimization Function of Bacterial Swarm Foraging 

The main goal based on bacterial foraging is to apply in 
order to find the minimum of nRP ∈φφ),( , not in the 

gradient )(φP∇ . Here, when φ is the position of a bacterium, 

and )(φJ  is an attractant-repellant profile. That is, it means 
where nutrients and noxious substances are located, so P<0, 
P=0, P>0 represent the presence of nutrients. A neutral 
medium, and the presence of noxious substances, respectively 
can showed by 

},...,2,1),,({),,( NilkjlkjH i == φ .             (6) 
Equation represents the positions of each member in the 
population of the N bacteria at the jth chemotactic step, kth 
reproduction step, and lth elimination-dispersal event. Let P(i, 
j, k, l) denote the cost at the location of the ith bacterium 

ni Rlkj ∈),,(φ . Reference [20, 21] let  

)()((),,(),,1( jiClkjlkj ii ϕφφ +=+= ,        (7) 
so that C(i)>0 is the size of the step taken in the random 
direction specified by the tumble. If at ),,1( lkji +φ  the cost 

J(i, j+1, k, l) is better (lower) than at ),,( lkjiφ , then another 
chemotactic step of size C(i) in this same direction will be 
taken and repeated up to a maximum number of steps Ns . Ns 
is the length of the lifetime of the bacteria measured by the 
number of chemotactic steps. Functions )(φi

cP , i=1, 2, . . . , S, 
to model the cell-to-cell signaling via an attractant and a 
repellant is represented by [14-16] 
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When we where 
T

p ][ ,...,1 φφφ =
 is a point on the 

optimization domain, Lattract is the depth of the attractant 

released by the cell and attractδ  is a measure of the width of 

the attractant signal. attractrepellant LK =
 is the height of the 

repellant effect magnitude), and attractδ  is a measure of the 

width of the repellant. The expression of )(φcP  means that 
its value does not depend on the nutrient concentration at 

position φ . That is, a bacterium with high nutrient 
concentration secrets stronger attractant than one with low 

nutrient concentration. Model use the function )(φarP  to 
represent the environment-dependent cell-to-cell signaling as 

 
( )( ) ( )φφφ car PPTP −= exp)(                (9) 

 
where T is a tunable parameter. Model consider 

minimization of P(i, j, k, l )+ ( )( )lkjP i
ar ,,φ , so that the cells 

will try to find nutrients, avoid noxious substances, and at the 
same time try to move toward other cells, but not too close to 
them. The function ( )( )lkjP i

ar ,,φ  implies that, with M 
being constant, the smaller ( )φP , the larger Par (φ ) and thus 
the stronger attraction, which is intuitively reasonable. In 
tuning the parameter M, it is normally found that, when M is 

very large, Par (φ ) is much larger than ( )φJ , and thus the 
profile of the search space is dominated by the chemical 
attractant secreted by E. coli. On the other hand, if T is very 

small, then Par (φ ) is much smaller than ( )φP , and it is the 
effect of the nutrients that dominates. In Par (φ ), the scaling 
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factor of Pc (φ ) is given as in exponential form.  
 

3.3 Bacteria Foraging Based Membership Function 
Tuning 

 
In this paper, when the initial value of the membership 

function type of triangular as Fig. 2 is given by X1_min=[0.46, 
0.48], X1_max=[0.77, 0.81], X2_min=[45.0, 47.0] 
X2_max=[ 61.0, 63.0], and learning rate boundary δ =[0.001, 
0.01], momentum constant boundary α=[0.00001, 0.0004], 
respectively, the final membership function obtained by 
immune algorithm is dashed line as shown in Fig. 2. 

 
 

0.480.46

0.4799677467 0.7789457406
0.77 0.81

, 
Fig. 2. Membership function shape of x1. 
 

3.4 Bacteria Foraging Algorithm Based Computational 
Procedure for Optimal Selection of Parameter  

 
In this algorithm, we use the immune algorithm based 

calculation procedure shown in Fig. 3 to optimize the learning 
rate, momentum term and fuzzy membership function of the 
above BA-FNN. We use 10 generation and 100 generation, 60 
populations, 10 bits per string, crossover rate equal to 0.6, and 
mutation probability equal to 0.1, respectively. 

This paper describes the method in the form of an algorithm 
to search optimal value of FNN parameter. 

[step 1] Initialize parameters n, N, NC, NS, Nre, Ned, Ped, 

C(i)( i=1,2,…,N), 
iφ , and random values of PID parameter. 

Where,   
n: Dimension of the search space ( Each Parameter of FNN 

parameters), 
N: The number of bacteria in the population, 
NC : chemotactic steps, 
Nre : The number of reproduction steps, 
Ned : the number of elimination-dispersal events, 
Ped : elimination-dispersal with probability,  
C(i): the size of the step taken in the random direction 

specified by the tumble. The controller parameter is searched 
in the range of parameter Kp=[0 30], Ti=[0 30], and Td=[0 
30]. 

[step 2]  Elimination-dispersal loop: l=l+1  
[step 3] Reproduction loop: k=k+1 
[step 4]Chemotaxis loop: j=j+1 
    [substep a] For i =1,2,…,N, take a chemotactic step for 

bacterium i as follows.  
[substep b] Compute ITSE (i ,j, k, l). 
[substep c] Let ITSElast=ITSE (i,j,k,l) to save this value 

since we may find a better cost via a run. 

[substep d] Tumble: generate a random vector 

∆(i)
nR∈ with each element ,,...,2,1),( pmim =∆  a 

randonumber on [-1, 1]. 
[substep e] Move: Let 

)()(

)()(),,(),,1(
ii

iiClkjlkj
T

ii

∆∆

∆
+=+ φφ

 
This results in a step of size )(iC in the direction of the 

tumble for bacterium i. 

[substep f] Compute ITSE ),,1,( lkji + . 
[substep g] Swim 
i) Let m=0 (counter for swim length). 

ii) While m< sN (if have not climbed down too long). 
 • Let m=m+1. 

 • If ITSE <+ ),,1,( lkji ITSElast ( (if doing better), let 

ITSElast=ITSE ),,1,( lkji + and let 

)()(

)()(),,1(),,1(
ii

iiClkjlkj
T

ii

∆∆

∆
++=+ φφ

 

   and use this ),,1( lkji +φ  to compute the new 

ITSE ),,1,( lkji + as we did in [substep f] 

• Else, let m= sN . This is the end of the while statement.  
[substep h] Go to next bacterium (i, 1) if Ni ≠ (i.e., go to 

[substep b] to process the next bacterium). 

[step 5]  If CNj < , go to step 3. In this case, continue 
chemotaxis, since the life of the bacteria is not over. 

[step 6]  Reproduction: 
    [substep a]  For the given k and l, and for each 

,,...,2,1 Ni =  let 

∑
+

=

=
1

1

),,,(
cN

j

i
health lkjiITSEITSE

 
be the health of bacterium i (a measure of how many 

nutrients it got over its lifetime and how successful it was at 
avoiding noxious substances). Sort bacteria and chemotactic 
parameters )(iC in order of ascending cost healthITSE (higher 

cost means lowerhealth). 
[substep b] The rS  bacteria with the highest 

healthITSE values die and the other rS  bacteria with the best 

values split (and the copies that are made are placed at the 
same location as their parent). 

[step 7] If reNk < , go to [step 3]. In this case, we have not 

reached the number of specified reproduction steps, so we 
start the next generation in the chemotactic loop. 

[step 8] Elimination-dispersal: For ,...,2,1 Ni =  with 
probability edP , eliminate and disperse each bacterium (this 

keeps the number of bacteria in the population constant). 
To do this, if you eliminate a bacterium, simply disperse 

one to a random location on the optimization domain. If 
edNl < , then go to [step 2]; otherwise end. 

 
 

4. Simulation and Discussions 
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In order to prove the learning effect of the proposed 

Bacteria based FNN (BA-FNN), we use the second-order 
highly nonlinear difference equation given as [4] 
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In the gas furnace, u(t-3) and y(t-1) as input, y(t) as output 

is used. Fig. 3 shows performance index by foraging 
differentiation rate of bacteri algorithm for the given model (8) 
and Figs. 4 and 5 are best fitness and object function 
depending on and differentiation rate of foraging selection 
pCS=0.2 and foraging selection pCS=0.5, respectively, when 
the number of membership function is 3. Fig. 4 and 5 shows 
comparison of fitness value depending differentiation rate of 
foraging (pCS), when the number of member ship function is 
2 (mem=[2, 2]). Fig. 7 and 9 represents best value of fitness 
function and object function, when the number of membership 
function is 3 (mem=[3, 3]) and differentiation rate of foraging 
pCS=0.2, respectively. Fig. 10 is comparison of fitness value 
by pCS to the number of member ship function,  Fig. 11 and 
12 are showing the best value of fitness when learning 
parameter of bacteria algorithm is 100 generation, 0.2 pCS 
(differentiation rate of foraging  selection), and the number 
of membership is 3.  

Table 1. Parameter obtained by simulation.  
2:2 3:3 

pCS 
PI E_PI PI E_PI

0.2 0.0354 0.2857 0.0354 0.2857
0.3 0.0408 0.2729 0.0356 0.2855
0.4 0.0409 0.2726 0.0359 0.2852
0.5 0.0394 0.2742 0.0361 0.2847

 
Figs. 16 and 17 is performance index error (PI) and test 

index error (E_PI), when the number of member ship function 
is 3. Table 1 is the value of PI and E_PI by pCS and Table 2 is 
membership function shape depending on generation of 
immune algorithm. Table 3 depicts comparison of the learning 
results obtained by GA based FNN model, HCM and GA 
based FNN, and the immune based FNN model proposed in 
this paper. Table 4 is the results depending on 10 generation 
and 100 generation in immune algorithm, respectively. 

 
5. Conclusions 

 
Since Fuzzy sets and fuzzy logic can capture the 

approximate, qualitative aspects of human reasoning and 
decision-making processes, they have been considered as 
effective tools to deal with uncertainties in terms of vagueness, 
ignorance, and imprecision 

On the other hand, neural networks (NN) appeared as 
promising tools (or designing high performance control 
systems), because they have the potential for dealing with 
favorable scenarios owing to nonlinear dynamics, drift in plant 
parameters, and shifts in operating points. Since then, the 
fuzzy-neural network (FNN) learning represents one of the 
most effective algorithms to build such linguistic models for 

control system or making decision.  
However, in many case, tuning of membership and 

weighting function remain difficulties. Some papers studied 
that genetic algorithms (GAs) are an efficient and robust tool 
for generating fuzzy rules and weighting function.  

 
Fig. 3. Performance index by differentiation rate of immune 

algorithm. 
 

 
Fig. 4. Best value of fitness function and object function.  

(mem=[2, 2], pCS=0.2) 
 

 
Fig. 5. Comparison of fitness value depending pCS. 

(mem=[2, 2]) 

 
Fig. 6. Best value of fitness function and object function.  

(mem=[3, 3], pCS=0.5) 
This paper proposes optimal learning method of 

fuzzy-neural network by bacteria foraging algorithm. The 
proposed learning model is the fuzzy-neural network form 
which can to obtain optimized linguistic knowledge by 
bacteria foraging algorithm. The learning algorithm of a 
bacteria foraging based FNN (BA-FNN) is composed of 
finding the initialization of membership functions and tuning 
of membership functions. The results are compared with the 
results by GA (genetic algorithm based neural network) and 
fuzzy-neural network, respectively. The results by the 
proposed learning method are showing more satisfactory than 
the other learning schemes. 
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Fig. 7. Comparison of fitness value depending pCS.  
(mem=[3, 3]) 

 
Fig.8. Best value of fitness by pCS. (mem=[2, 2]) 

 

 
Fig. 10. Best value of fitness by pCS. (mem=[3, 3]) 
 

 
Fig. 11 PI- error by pCS. (mem=[2, 2]) 

 

 
Fig. 12. E_PI- error by pCS. (mem=[2, 2]) 
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