

1. INTRODUCTION

Some researchers suggest a model of fuzzy neuron that
linear synaptic connections can be replaced with a nonlinearity
characterized by a membership function and a fuzzy neural
network model [1], [2]. The nonlinear characteristics of which
are represented by fuzzy if-then rules with complementary
membership functions. Since neo fuzzy neuron model or fuzzy
neural network can have a good ability to describe a nonlinear
relationship between multi-inputs and multi-output as well as
its short leaning time compared with a conventional neural
network, they are expecting as future linguistic tool for
intelligence or soft computing. On the other hand, radial basis
function networks (RBFNs) and back propagation neural
networks (BPNNS) have yielded useful results in many
practical areas such as pattern recognition, system
identification and control, due primarily to their simple
structures for realization and well established training
algorithms. Many fuzzy paradigms, meanwhile, have been
studied is recent years by viewing a fuzzy logic system (FLS)
as a functionally equivalent RBFN or BPNN. As indicated in
some papers [3], [4], the most important advantage of such an
FLS spanned by fuzzy basic functions is the provision of a
natural framework for combining numerical values and
linguistic symbols in a uniform way. From a mathematical
point of view, the input-output expressions of those mappings
are identical in spite of the distinct inference procedure.
Capability discrimination between neural and fuzzy system is
thus diminished for proofs of universal neural/fuzzy
approximators. Using neural networks or fuzzy systems to
approximate a given plant or to control a process flow depends
on whether rich available data are at hand or whether the
'If-Then' control heuristics could be established by human
experts familiar with system dynamics under consideration. A
simple sigmoidal-like neuron is employed as a preassigned
algorithm of the law of structural change which is directed by
the current value of the error signal. However, in case of
almost fuzzy logic, fuzzy-neural network, grade of
membership and weighting function must be tuned by an
approximation or experience-based tuning method. Some
papers are written with a couple of objectives to demonstrate

that genetic algorithms (GAs) are an efficient and robust
tool for generating fuzzy rules and weighting function. GAs
can construct a set of fuzzy rules that optimize multiple
criteria [5]. An important observation that the rules searched
by GAs are randomly scattered is made and a solution to this
problem is provided by including a smoothness cost in the
objective function.

On the other hand, the particle swarm is an algorithm for
finding optimal regions of complex search spaces through
interaction of individuals in a population of particles. Though
the algorithm, which is based on a metaphor of social
interaction, has been shown to perform well, researchers have
not adequately explained how it works. Further, traditional
versions of the algorithm have had some dynamical properties
that were not considered to be desirable, notably the particles’
velocities needed to be limited in order to control their
trajectories.

This paper proposes particle swarm optimization algorithm
based optimal learning approach of fuzzy-neural network [1-5].
The first phase of the PSOA-FNN is to find the initial
membership functions of the fuzzy neural network model and
the second phase is to obtain optimal membership functions of
the proposed model by particle swarm optimization algorithm.

2. STRUCTURE OF A PARTICLE SWARM

OPTIMIZATION ALGORITHM BASED
FUZZY-NEURAL NETWORK

The structure of PSOA-FNN is shown in Fig. 1 [3] and the
output of the FNN part of PSOA-FNN can be represented by
the following equation (1).

 In Fig. 1 and Equation (1), the input space ix is divided
into several fuzzy segments which are characterized by
membership functions inii µµµ ,...,, 21 within the range
between minx and maxx . The grade of membership
function is also given as numbers assigned to labels of fuzzy
membership function. The membership functions are followed
by variable weights,1 ini ww Mapping from ix to

)(ii xf is determined by fuzzy inferences and fuzzy rule is

Optimal Learning of Fuzzy Neural Network Using Particle Swarm

Optimization Algorithm

Dong Hwa Kim, Jae Hoon Cho

Dept. of Instrumentation and Control Eng., Hanbat National University,
16-1 San Duckmyong-Dong Yuseong-Gu, Daejon City, Korea, 305-719.

E-mail: kimdh@hanbat.ac.kr, Hompage: aialab.net
Tel: +82-42-821-1170, Fax: +82-821-1164

Abstract: Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for
intelligent control and decision making in complex systems. The fuzzy-neural network (FNN) learning represents one of the most
effective algorithms to build such linguistic models. This paper proposes particle swarm optimization algorithm based optimal
learning fuzzy-neural network (PSOA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can
handle linguistic knowledge as tuning membership function of fuzzy logic by particle swarm optimization algorithm. The learning
algorithm of the PSOA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy
neural network model. In the second phase, particle swarm optimization algorithm is used for tuning of membership functions of
the proposed model.

Keywords: Fuzzy neural network; Particle swarm algorithm; Multiobjective control; Optimization.

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

421

defined as Equation (2).

x1

ŷ

µ1i N

N

N

∑
w1i f1(x1)

∑x2

N

N

N

∑

xk

N

N

N

∑

µ2i

w2i

µki

wki

f2(x2)

fk(xk)

Layer 2 Layer 3
Layer 4

Layer 1 Layer 5

Layer 6

Fig. 1. The structure of particle swarm optimization

algorithm based optimal learning fuzzy-neural network.

∑
=

=

+++=
m

i
ii

mm

xf

xfxfxfy

1

2211

)(

)(...)()(

 (1)

xnyxnini
n

xyxii

wCthenAisxIfR

wCthenAisxIfR

=

•
•
•

=

:

: 111
1

 (2)

As the fuzzy inferences adopted here is that of a singleton

consequent, each weight ijw is a deterministic value such as
0.8, 0.9. It should be emphasized that each
membership function in antecedent is triangular and assigned
to be complementary (so called by the authors) with
neighbouring ones. In other words, an input signal

ix activates only two membership functions simultaneously
and the sum of grades of these two neighbouring membership
functions labelled by k and k+1 is always equal to 1, that
is .1)()(1,, =+ + ikiiki xx µµ So, the output of the fuzzy neural
network can be represented by the following simple Equation
(3).

xi

n

i
xi

ikiiik

ikiikikiik
n

j
iij

n

j
ijiij

n

i
yxixiii

w

xx
wxwx

x

wx

Cxf

∑

∑

∑

∑

=

+

++

=

=

=

⋅=

+
+

==

•=

1

1,

11

1

1

1

)()(
)()(

)(

)(

)(

µ

µµ
µµ

µ

µ

µ

 (3)

In this Equation, the weight ijw are assigned by learning

the rule of which is described by n if-then rules. That is, If
input ix lies in the fuzzy segment ijµ , then the

corresponding weight ijw should be increased directly

proportional to the output error (y- y), because the error is
caused by the weight. This proposition can be represented by
the following equation;

11)()()(+++= xiixixiixiii wxwxxf µµ (4)

The learning procedure is the incremental change of

weights for each input pattern. That is, the incremental change
of minimizing the squared error (4) is obtained from

() ())1()(2)1(−−+−=+∆ twtwyytw xixiixixi αµδ (5)

In this learning algorithm, all the initial weights are

assigned to be zero and the updating of the weights is achieved
after calculation of cumulative value in Equation (5).

Where, y is the given data, y is the output of model,
δ learning rate, α is momentum constant and αδ , have
the range of 0 to 1, respectively. The xiw is the present
weighting function and)1(−twxi is the previous weighting
function.

3. PARTICLE SWARM OPTIMIZATION

ALGORITHMS FOR OBTAINING OPTIMAL
LEARNING OF THE FNN

3.1 Overview of Particle Swarm Optimization

Algorithm
A population of particles is initialized with random

positions xi
r

 and velocities vi
r

, and a function, f, is
evaluated, using the particle’s positional coordinates as input
values. Positions and velocities are adjusted, and the
function evaluated with the new coordinates at each time-step.
When a particle discovers a pattern that is better than any it
has found previously, it stores the coordinates in a vector iP

r
.

The difference between iP
r

 (the best point found by i so far)
and the individual’s current position is stochastically added to
the current velocity, causing the trajectory to

oscillate around that point. Further, each particle is defined
within the context of a topological neighborhood comprising
itself and some other particles in the population. The
stochastically weighted difference between the
neighborhood’s best position gP

r
 and the individual’s current

position is also added to its velocity, adjusting it for the next
time-step. These adjustments to the particle’s movement
through the space cause it to search around the two best
positions.

The algorithm in pseudocode as the following figures
[7-11]:

Fig. 2. Procedure for particle swarm optimization

algorithm.
The variables 1ϕ and 2ϕ are random positive numbers,

drawn from a uniform distribution and defined by an upper
limit maxϕ which is a parameter of the system. In this

version, the term variable vid is limited to the range
maxV± , for reasons which will be explained below. The

422

values of the elements in gP
r

 are determined by comparing
the best performances of all the members of i’s topological
neighborhood, defined by indexes of some other population
members, and assigning the best performer’s index to the
variable g. Thus gP

r
 represents the best position found by

any member of the neighborhood.
The random weighting of the control parameters in the

algorithm results in a kind of explosion or a “drunkard's walk”
as particles’ velocities and positional coordinates careen
toward infinity. The explosion has traditionally been
contained through implementation of a Vmax parameter,
which limits step-size, or velocity. The current paper
however demonstrates that the implementation of properly
defined constriction coefficients can prevent explosion; further,
these coefficients can induce particles to converge on local
optima.

An important source of the swarm’s search capability is the
interactions among particles as they react to one another’s
findings. Analysis of interparticle effects is beyond the scope
of this paper, which focuses on the trajectories of single
particles.

We begin the analysis by stripping the algorithm down to a
most simple form; we will add things back in later. The

particle swarm formula adjusts the velocity vi
r

 by adding
two terms to it. The two terms are of the same form, that is,
()ixp

rr
−ϕ , where P

r
is the best position found so far, by the

individual particle in the first term, or by any neighbor in the

second term. The formula can be shortened by redefining idp
as follows:

21

21

ϕϕ

ϕϕ

+

+
←

pp
p gdid

id
 (6)

Thus we can simplify our initial investigation by looking at
the behavior of a particle whose velocity is adjusted by only
one term:

() () ()()txptvtv idididid −+=+ ϕ1 , (7)

where 21 ϕϕϕ += This is algebraically identical to the

standard two-term form.
When the particle swarm operates on an optimization

problem, the value of iP
r

 is constantly updated, as the system
evolves toward an optimum. In order to further simplify the
system and make it understandable, we set iP

r
 to a constant

value in the following analysis. The system will also be more
understandable if we make ϕ a constant as well; where
normally it is defined as a random number between zero and a
constant upper limit, we will remove the stochastic component

initially and reintroduce it in later sections. The effect of ϕ
on the system is very important, and much of the present paper
is involved in analyzing its effect on the trajectory of a
particle.

The system can be simplified even further by considering a
1-dimensional problem space, and again further by reducing
the population to one particle. Thus we will begin by
looking at a stripped-down particle by itself, e.g., a population
of one, one-dimensional, deterministic particle, with a
constant p.

Thus we begin by considering the reduced system:
()()

)1()()1(
)()1(

⎩
⎨
⎧

++=+
−+=+

tvtxtx
txptvtv ϕ

 (8)
where p and ϕ are constants. No vector notation is

necessary, and there is no randomness.
Kennedy [11] found that the simplified particle’s trajectory

is dependent on the value of the control parameter ϕ, and
recognized that randomness was responsible for the explosion
of the system, though the mechanism which caused the
explosion was not understood. M. clerc [10] further analyzed
the system and concluded that the particle as seen in discrete
time on an underlying continuous foundation of sine waves.

The present paper analyzes the particle swarm as it moves
in discrete time (the algebraic view), then progresses to the
view of it in continuous time (the analytical view). A
5-dimensional depiction is developed, which completely
describes the system. These analyses lead to a generalized
model of the algorithm, containing a set of coefficients to
control the system’s convergence tendencies. When
randomness is re-introduced to the full model with
constriction coefficients, the deleterious effects of randomness
are seen to be controlled. Some results of the particle swarm
optimizer, using modifications derived from the analysis, are
presented; these results suggest methods for altering the
original algorithm in ways that eliminate some problems and
increase the optimization power of the particle swarm.

3.2 Particle Swarm Optimization Based Membership

Function Tuning
In this paper, when the initial value of the membership

function type of triangular as Figs. 3, 4 are given by
X1_min=[0.46, 0.48], X1_max=[0.77, 0.81], X2_min=[45.0,
47.0] X2_max=[61.0, 63.0], and learning rate boundary δ
=[0.001, 0.01], momentum constant boundary α=[0.00001,
0.0004], respectively, the final membership function obtained
by particle swarm optimization algorithm is dashed line as
shown in Fig. 3 and Fig. 4.

0 .480 .46

0 .4 7 9 9 6 7 7 4 6 7 0 .7 7 8 9 4 5 7 4 0 6
0 .77 0 .81

,
Fig. 3. Membership function shape of x1.

47 .0

4 6 .2 4 7 5 0 0 6 5 5
61 .0 63 .0

6 2 .2 5 6 3 0 4 9 8 5 3
Fig. 4. Membership function shape of x1.

Initialize population
Do

For i= 1 to Population Size
if f(xi

r)<f(pi
r) then pi

r = xi
r

pg
r =min(pneighbors

r)

For d = 1 to Dimension
() ()idgdidididid xpxpvv −+−+= 21 ϕϕ

))),(min()(maxVvabsvsignv ididid ⋅=

ididid vxx +=
Next d

Next i
Until termination criterion is met

423

3.3 Particle Swarm Optimization Algorithm Based
Computational Procedure for Optimal Selection of
Parameter

In this algorithm, we use the particle swarm optimization
algorithm based calculation procedure shown in Fig. 2 to
optimize the learning rate, momentum term and fuzzy
membership function of the above PSOA-FNN. We use 10
generation and 100 generation, 60 populations, 10 bits per
string, crossover rate equal to 0.6, and mutation probability
equal to 0.1, respectively.

The searching procedures of the proposed PSOA-FNN
structure is shown as below.

[Step 1] Specify the lower and upper bounds of the six
parameters of fuzzy-neural network structure and initialize
randomly the individuals of the population including searching
points, velocities, pbests, and gbest.

[Step 2] Calculate the evaluation value of each individual
in

the population using the evaluation function given by

)(
1

ixW
f = .

The evaluation function is a reciprocal of the performance
criterion as in (9). It implies the smaller the value of
individual , the higher its evaluation value. In order to limit the
evaluation value of each individual of the population within a
reasonable range.

These performance criteria in the time domain include the
specification for tuning. The performance criterion can satisfy
the designer requirements using the weighting factor value.
We can set to be larger than 0.7. On the other hand, we can set
to be smaller than 0.7 to reduce the over fitting. In this paper,
is set in the range of 0.8 to 1.5.

[Step 3] Compare each individual’s evaluation value with
its pbests. The best evaluation value among the is denoted as
gbest.

[Step 4] Modify the member velocity of each individual
according to (9)

()
()

6,...,2,1
,,...,2,1

)(

)(
)(**

2

)(
,

*
1

)()1(
,

=
=

−+

−+=+

g
nj

xgbestRandc

xpbestrandcvv
t

ig

t
igj

t
j

t
gj φ

(9)

where the value of φ is set by

iter
iter

×
−

−=
max

minmax
max

φφ
φφ . (10)

 When is g is 1, 1,jv represents the change in velocity of

controller parameter. When is 2, represents the change in
velocity of controller parameter.)1(

,
+t
gjv is velocity of particle

j at iteration.
[Step 5] If man

g
t
gj Vv >+)1(

, , then man
g

t
gj Vv >+)1(

,

If min)1(
, g
t
gj Vv >+ , then man

g
t
gj Vv >+)1(

, .

[Step 6] Modify the member position of each individual
according to (11)

(max))((min)

)1()()1(,

i
t

ii

t
i

t
i

t
i

xxx

vxx

≤≤

+= ++

 (11)

where and represent the lower and upper bounds,

respectively, of member of the individual . For example, when

is 1, the lower and upper bounds of the parameter ix
are

X1_min=[0.46, 0.48], X1_max=[0.77, 0.81], and
X2_min=[45.0, 47.0], X2_max=[61.0, 63.0], respectively.

Cell ix is composed of the following equation

[]iii xxxxx φα ,,,,, max
2

min
2

max
1

min
1= .

[Step 7] If the number of iterations reaches the maximum,
then go to Step 8. Otherwise, go to Step 2.
[Step 8] The individual that generates the latest is an

optimal controller parameter.

4. Simulation and Discussions

In order to prove the learning effect of the proposed
PSOA-FNN, we use the second-order highly nonlinear
difference equation given as [4]

k
kk

kkk
k u

yy
yyy

y +
++

+
=

−−

−−−
2

2
2

1

121

1
)5.2(

. (12)

In Fig.5- Fig. 11, xub is max range of FNN Parameter and

its curves represent PI_error and E_PI_error depending on
max
gV on FNN structure. In Fig.5 and Fig. 6, in case of

MF=([2:2]), curve of max
gV = xub/2 is showing the best

performance.
Fig. 7 and Fig. 8 represent the best performance when

membership function is MF=([3,2]) on max
gV =xub/4 and Fig.

9 and Fig. 10 represent curves on FNN
parameter max

gV =xub/2 and max
gV =xub/6 when membership

function is MF=([3:3]). Table 1 is showing performance of
PSOA to variation of membership function of FNN. Table 2
represents performance of PSOA to variation of parameters of
FNN.

The results are compared with the results by particle swarm
optimization based neural network and fuzzy-neural network,
respectively. The results by the proposed learning method is
showing more satisfactory than the other learning
schemes.

5. CONCLuSIONS

Since Fuzzy sets and fuzzy logic can capture the

approximate, qualitative aspects of human reasoning and
decision-making processes, they have been considered as
effective tools to deal with uncertainties in terms of vagueness,
ignorance, and imprecision

On the other hand, neural networks (NN) appeared as
promising tools (or designing high performance control
systems), because they have the potential for dealing with
favorable scenarios owing to nonlinear dynamics, drift in plant
parameters, and shifts in operating points. Since then, the
fuzzy-neural network (FNN) learning represents one of the
most effective algorithms to build such linguistic models for

424

control system or making decision.
 However, in case of almost fuzzy logic, fuzzy-neural

network, grade of membership and weighting function must be
tuned by an approximation or experience-based tuning method.
Up to this time, some papers are written with a couple of
objectives to demonstrate that genetic algorithms (GAs) are an
efficient and robust tool for generating fuzzy rules and
weighting function.

Fig. 3. PI-error by step of V_max (mem=([2:2])

Fig. 4. E_ PI-error by step of V_max (mem=[2:2])

Fig. 5. PI-error by step of V_max (mem=([3:2])

Fig.6. E_ PI-error by step of V_max (mem=[3:2])

Fig. 7. PI-error by step of V_max PSO (mem=([3:3])

Fig. 8. E_ PI-error by step of V_max (mem=[3:3])

The proposed learning algorithm of the PSOA-FNN is

composed of two phases. The first phase is to find the initial
membership functions of the fuzzy neural network model. In
the second phase, particle swarm optimization algorithm is
used for tuning of membership functions of the proposed
model.

Table 1. Parameter obtained by simulation
 MF([2:2]) MF([3:2]) MF([3:3])

vt_max PI E_PI PI E_PI PI E_PI

xub/2 0.0379 0.2672 0.0305 0.30245 0.0345 0.292

xub/4 0.0378 0.2694 0.0340 0.29734 0.03202 0.2961

xub/6 0.0377 0.2693 0.0358 0.29532 0.0345 0.292

Table 2. Comparison of the results by learning methods

Model PI E_PI MF

0.027 0.298 4
FNN model (GA)

0.026 0.304 6

0.027 0.294 4
FNN model (HCM+GA)

0.032 0.276 6

0.0394 0.274 4
FNN model (CS-GA)

0.0361 0.284 6

0.0379 0.276 4
FNN model(PSO)

0.0345 0.292 6

This paper proposes particle swarm optimization
algorithm based optimal learning fuzzy-neural network
(PSOA-FNN). Since the proposed learning scheme is
the fuzzy-neural network structure which can handle
linguistic knowledge as tuning membership function of
fuzzy logic by particle swarm optimization algorithm, it
can easily be optimization on FNN structure

425

ACKNOWLEDGEMENTS

The authors would like to gratefully acknowledge the
financial support of KESRI (Korea Electrical
Engineering & Science Research Institute) under project.
R-2003-B-286.

REFERENCES

[1] Park. S. and Sandberg. I.W, “Approximation and
radial-basis-function networks,” Neural Computer, pp.
105-110.

[2] C.C. Lee, “Fuzzy logic in control system: Fuzzy logic
controller, part I and II,” IEEE Trans. Syst. Man Cybern,
Vol.20, No.2, pp 404-435, 1990.

[3] WANG, H., BROWN, M., and HARRIS, C.J., “Neural
network modeling of unknown nonlinear systems subiect
to immeasurable disturbances,” IEE Proc., Control Theory
Appl., Vol. 141, No. 4, pp. 216-222, 1994.

[4] HORIKAWA. S. FURUHASHl. T. and UCHIKAWA. Y,
“On fuzzy modeling using fuzzy neural networks with
back propagation algorithm,” IEEE Trans. Neural network,
pp. 801-806, 1992.

[5] Wael A. Farag. Victor H. Quintana, and Germano
Lambert-Torred, “A genetic-based neuro-fuzzy approach
for modeling and control of dynamical systems,” IEEE
Trans. on neural networks, Vol. 9, No. 5, Sept. 1998.

[6] R. C. Eberhart and J. Kennedy, “A New Optimizer Using
Particles Swarm Theory,” presented at Proc. Sixth
International Symposium on Micro Machine and Human
Science, Nagoya, Japan, 1995.

[7] J. Kennedy and R. C. Eberhart, “Particle Swarm
Optimization,” presented at IEEE International Conference
on Neural Networks, Perth, Australia, 1995.

[8] P. J. Angeline, “Using Selection to Improve Particle
Swarm Optimization,” presented at IEEE International
Conference on Evolutionary Computation, Anchorage,
Alaska, May 4-9, 1998.

[9] A. Carlisle and G. Dozier, “Adapting Particle Swarm
Optimization to Dynamics Environments,” presented at
International Conference on Artificial Intelligence, Monte
Carlo Resort, Las Vegas, Nevada, USA, 1998.

[10] M. Clerc, “The Swarm and the Queen: Towards a
Deterministic and Adaptive Particle Swarm Optimization,”
presented at Congress on Evolutionary Computation,
Washington D.C., 1999.

[11] J. Kennedy, “Stereotyping: Improving Particle Swarm
Performance With Cluster Analysis,” presented at
(submitted), 2000.

[12] R. C. Eberhart and Y. Shi, “Comparing inertia weights
and constriction factors in particle swarm optimization,”
presented at International Congress on Evolutionary
Computation, San Diego, California, 2000.

[13] Y. H. Shi and R. C. Eberhart, “A Modified Particle
Swarm Optimizer,” presented at IEEE International
Conference on Evolutionary Computation, Anchorage,
Alaska, May 4-9, 1998.

[14] S. Naka and Y. Fukuyama, “Practical Distribution State
Estimation Using Hybrid Particle Swarm Optimization,”
presented at IEEE Power Engineering Society Winter
Meeting, Columbus, Ohio, USA., 2001.

[15] PSC, http://www.particleswarm.net
[16] D. H. Wolpert and W. G. Macready, “No Free Lunch

for Search,” The Santa Fe Institute 1995.

[17] M. Clerc and J. Kennedy, “The Particle Swarm:
Explosion, Stability, and Convergence in a
Multi-Dimensional Complex Space,” IEEE Journal of
Evolutionary Computation, vol. in press, No. , 2001.

426

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

