
 

1. INTRODUCTION 
 

Some researchers suggest a model of fuzzy neuron that 
linear synaptic connections can be replaced with a nonlinearity 
characterized by a membership function and a fuzzy neural 
network model [1], [2]. The nonlinear characteristics of which 
are represented by fuzzy if-then rules with complementary 
membership functions. Since neo fuzzy neuron model or fuzzy 
neural network can have a good ability to describe a nonlinear 
relationship between multi-inputs and multi-output as well as 
its short leaning time compared with a conventional neural 
network, they are expecting as future linguistic tool for 
intelligence or soft computing. On the other hand, radial basis 
function networks (RBFNs) and back propagation neural 
networks (BPNNS) have yielded useful results in many 
practical areas such as pattern recognition, system 
identification and control, due primarily to their simple 
structures for realization and well established training 
algorithms. Many fuzzy paradigms, meanwhile, have been 
studied is recent years by viewing a fuzzy logic system (FLS) 
as a functionally equivalent RBFN or BPNN. As indicated in 
some papers [3], [4], the most important advantage of such an 
FLS spanned by fuzzy basic functions is the provision of a 
natural framework for combining numerical values and 
linguistic symbols in a uniform way. From a mathematical 
point of view, the input-output expressions of those mappings 
are identical in spite of the distinct inference procedure. 
Capability discrimination between neural and fuzzy system is 
thus diminished for proofs of universal neural/fuzzy 
approximators. Using neural networks or fuzzy systems to 
approximate a given plant or to control a process flow depends 
on whether rich available data are at hand or whether the 
'If-Then' control heuristics could be established by human 
experts familiar with system dynamics under consideration. A 
simple sigmoidal-like neuron is employed as a preassigned 
algorithm of the law of structural change which is directed by 
the current value of the error signal. However, in case of 
almost fuzzy logic, fuzzy-neural network, grade of 
membership and weighting function must be tuned by an 
approximation or experience-based tuning method. Some 
papers are written with a couple of objectives to demonstrate  

 

that genetic algorithms (GAs) are an efficient and robust 
tool for generating fuzzy rules and weighting function. GAs 
can construct a set of fuzzy rules that optimize multiple 
criteria [5]. An important observation that the rules searched 
by GAs are randomly scattered is made and a solution to this 
problem is provided by including a smoothness cost in the 
objective function.  

On the other hand, the particle swarm is an algorithm for 
finding optimal regions of complex search spaces through 
interaction of individuals in a population of particles. Though 
the algorithm, which is based on a metaphor of social 
interaction, has been shown to perform well, researchers have 
not adequately explained how it works.  Further, traditional 
versions of the algorithm have had some dynamical properties 
that were not considered to be desirable, notably the particles’ 
velocities needed to be limited in order to control their 
trajectories.  

This paper proposes particle swarm optimization algorithm 
based optimal learning approach of fuzzy-neural network [1-5]. 
The first phase of the PSOA-FNN is to find the initial 
membership functions of the fuzzy neural network model and 
the second phase is to obtain optimal membership functions of 
the proposed model by particle swarm optimization algorithm. 

 
2. STRUCTURE OF A PARTICLE SWARM 

OPTIMIZATION ALGORITHM BASED 
FUZZY-NEURAL NETWORK  

The structure of PSOA-FNN is shown in Fig. 1 [3] and the 
output of the FNN part of PSOA-FNN can be represented by 
the following equation (1). 

 In Fig. 1 and Equation (1), the input space ix  is divided 
into several fuzzy segments which are characterized by 
membership functions inii µµµ ,...,, 21  within the range 
between minx  and maxx . The grade of membership 
function is also given as numbers assigned to labels of fuzzy 
membership function. The membership functions are followed 
by variable weights ....,1 ini ww  Mapping from ix  to 

)( ii xf is determined by fuzzy inferences and fuzzy rule is 
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defined as Equation (2). 
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Fig. 1. The structure of particle swarm optimization 

algorithm based optimal learning fuzzy-neural network. 
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As the fuzzy inferences adopted here is that of a singleton 

consequent, each weight ijw is a deterministic value such as 
0.8, 0.9. It should be emphasized that each 
membership function in antecedent is triangular and assigned 
to be complementary (so called by the authors) with 
neighbouring ones. In other words, an input signal 

ix activates only two membership functions simultaneously 
and the sum of grades of these two neighbouring membership 
functions labelled by k and k+1 is always equal to 1, that 
is .1)()( 1,, =+ + ikiiki xx µµ  So, the output of the fuzzy neural 
network can be represented by the following simple Equation 
(3).   
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In this Equation, the weight ijw are assigned by learning 

the rule of which is described by n if-then rules. That is, If 
input ix  lies in the fuzzy segment ijµ , then the 

corresponding weight ijw should be increased directly 

proportional to the output error (y- y ), because the error is 
caused by the weight. This proposition can be represented by 
the following equation; 

 
11 )()()( +++= xiixixiixiii wxwxxf µµ           (4) 

 
The learning procedure is the incremental change of 

weights for each input pattern. That is, the incremental change 
of minimizing the squared error (4) is obtained from  

 
( ) ( ))1()(2)1( −−+−=+∆ twtwyytw xixiixixi αµδ   (5) 

 
In this learning algorithm, all the initial weights are 

assigned to be zero and the updating of the weights is achieved 
after calculation of cumulative value in Equation (5). 

Where, y is the given data, y  is the output of model, 
δ learning rate, α  is momentum constant and αδ ,  have 
the range of 0 to 1, respectively. The xiw  is the present 
weighting function and )1( −twxi  is the previous weighting 
function. 

  
3. PARTICLE SWARM OPTIMIZATION 

ALGORITHMS FOR OBTAINING OPTIMAL 
LEARNING OF THE FNN 

 
3.1 Overview of Particle Swarm Optimization 

Algorithm 
A population of particles is initialized with random 

positions xi
r

 and velocities vi
r

, and a function, f, is 
evaluated, using the particle’s positional coordinates as input 
values.  Positions and velocities are adjusted, and the 
function evaluated with the new coordinates at each time-step.  
When a particle discovers a pattern that is better than any it 
has found previously, it stores the coordinates in a vector iP

r
.  

The difference between iP
r

 (the best point found by i so far) 
and the individual’s current position is stochastically added to 
the current velocity, causing the trajectory to  

oscillate around that point. Further, each particle is defined 
within the context of a topological neighborhood comprising 
itself and some other particles in the population.  The 
stochastically weighted difference between the 
neighborhood’s best position gP

r
 and the individual’s current 

position is also added to its velocity, adjusting it for the next 
time-step. These adjustments to the particle’s movement 
through the space cause it to search around the two best 
positions. 

The algorithm in pseudocode as the following figures 
[7-11]: 

 
Fig. 2. Procedure for particle swarm optimization 

algorithm. 
The variables 1ϕ  and 2ϕ  are random positive numbers, 

drawn from a uniform distribution and defined by an upper 
limit maxϕ  which is a parameter of the system.  In this 

version, the term variable vid  is limited to the range 
maxV± , for reasons which will be explained below. The 
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values of the elements in gP
r

 are determined by comparing 
the best performances of all the members of i’s topological 
neighborhood, defined by indexes of some other population 
members, and assigning the best performer’s index to the 
variable g.  Thus gP

r
 represents the best position found by 

any member of the neighborhood. 
The random weighting of the control parameters in the 

algorithm results in a kind of explosion or a “drunkard's walk” 
as particles’ velocities and positional coordinates careen 
toward infinity.  The explosion has traditionally been 
contained through implementation of a Vmax parameter, 
which limits step-size, or velocity.  The current paper 
however demonstrates that the implementation of properly 
defined constriction coefficients can prevent explosion; further, 
these coefficients can induce particles to converge on local 
optima. 

An important source of the swarm’s search capability is the 
interactions among particles as they react to one another’s 
findings. Analysis of interparticle effects is beyond the scope 
of this paper, which focuses on the trajectories of single 
particles. 

We begin the analysis by stripping the algorithm down to a 
most simple form; we will add things back in later.  The 

particle swarm formula adjusts the velocity vi
r

 by adding 
two terms to it. The two terms are of the same form, that is, 
( )ixp

rr
−ϕ , where P

r
is the best position found so far, by the 

individual particle in the first term, or by any neighbor in the 

second term. The formula can be shortened by redefining idp  
as follows: 

21

21

ϕϕ

ϕϕ

+

+
←

pp
p gdid

id
             (6) 

Thus we can simplify our initial investigation by looking at 
the behavior of a particle whose velocity is adjusted by only 
one term: 

 
( ) ( ) ( )( )txptvtv idididid −+=+ ϕ1 ,      (7) 

 
where 21 ϕϕϕ +=  This is algebraically identical to the 

standard two-term form. 
When the particle swarm operates on an optimization 

problem, the value of iP
r

 is constantly updated, as the system 
evolves toward an optimum. In order to further simplify the 
system and make it understandable, we set iP

r
 to a constant 

value in the following analysis. The system will also be more 
understandable if we make ϕ a constant as well; where 
normally it is defined as a random number between zero and a 
constant upper limit, we will remove the stochastic component 

initially and reintroduce it in later sections.  The effect of ϕ 
on the system is very important, and much of the present paper 
is involved in analyzing its effect on the trajectory of a 
particle. 

The system can be simplified even further by considering a 
1-dimensional problem space, and again further by reducing 
the population to one particle.  Thus we will begin by 
looking at a stripped-down particle by itself, e.g., a population 
of one, one-dimensional, deterministic particle, with a 
constant p. 

Thus we begin by considering the reduced system: 
( )( )
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           (8) 
where p and ϕ are constants.  No vector notation is 

necessary, and there is no randomness. 
Kennedy [11] found that the simplified particle’s trajectory 

is dependent on the value of the control parameter ϕ, and 
recognized that randomness was responsible for the explosion 
of the system, though the mechanism which caused the 
explosion was not understood.  M. clerc [10] further analyzed 
the system and concluded that the particle as seen in discrete 
time on an underlying continuous foundation of sine waves. 

The present paper analyzes the particle swarm as it moves 
in discrete time (the algebraic view), then progresses to the 
view of it in continuous time (the analytical view).  A 
5-dimensional depiction is developed, which completely 
describes the system.  These analyses lead to a generalized 
model of the algorithm, containing a set of coefficients to 
control the system’s convergence tendencies.  When 
randomness is re-introduced to the full model with 
constriction coefficients, the deleterious effects of randomness 
are seen to be controlled.  Some results of the particle swarm 
optimizer, using modifications derived from the analysis, are 
presented; these results suggest methods for altering the 
original algorithm in ways that eliminate some problems and 
increase the optimization power of the particle swarm. 

 
3.2 Particle Swarm Optimization Based Membership 

Function Tuning 
In this paper, when the initial value of the membership 

function type of triangular as Figs. 3, 4 are given by 
X1_min=[0.46, 0.48], X1_max=[0.77, 0.81], X2_min=[45.0, 
47.0] X2_max=[ 61.0, 63.0], and learning rate boundary δ 
=[0.001, 0.01], momentum constant boundary α=[0.00001, 
0.0004], respectively, the final membership function obtained 
by particle swarm optimization algorithm is dashed line as 
shown in Fig. 3 and Fig. 4. 

 

0 .480 .46

0 .4 7 9 9 6 7 7 4 6 7 0 .7 7 8 9 4 5 7 4 0 6
0 .77 0 .81

, 
Fig. 3. Membership function shape of x1. 
 

47 .0
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6 2 .2 5 6 3 0 4 9 8 5 3  
Fig. 4. Membership function shape of x1. 

Initialize population 
Do 

For i= 1 to Population Size 
if f( xi

r )<f( pi
r ) then pi

r = xi
r  

pg
r =min( pneighbors

r ) 

For d = 1 to Dimension 
( ) ( )idgdidididid xpxpvv −+−+= 21 ϕϕ

))),(min()( maxVvabsvsignv ididid ⋅=  

ididid vxx +=  
Next d 

Next i 
Until termination criterion is met 
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3.3 Particle Swarm Optimization Algorithm Based 
Computational Procedure for Optimal Selection of 
Parameter  

In this algorithm, we use the particle swarm optimization 
algorithm based calculation procedure shown in Fig. 2 to 
optimize the learning rate, momentum term and fuzzy 
membership function of the above PSOA-FNN. We use 10 
generation and 100 generation, 60 populations, 10 bits per 
string, crossover rate equal to 0.6, and mutation probability 
equal to 0.1, respectively. 

The searching procedures of the proposed PSOA-FNN 
structure is shown as below. 

[Step 1] Specify the lower and upper bounds of the six 
parameters of fuzzy-neural network structure and initialize 
randomly the individuals of the population including searching 
points, velocities, pbests, and gbest. 

[Step 2] Calculate the evaluation value of each individual 
in 

the population using the evaluation function given by 

)(
1

ixW
f = . 

The evaluation function is a reciprocal of the performance 
criterion as in (9). It implies the smaller the value of 
individual , the higher its evaluation value. In order to limit the 
evaluation value of each individual of the population within a 
reasonable range. 

These performance criteria in the time domain include the 
specification for tuning. The performance criterion can satisfy 
the designer requirements using the weighting factor value. 
We can set to be larger than 0.7. On the other hand, we can set 
to be smaller than 0.7 to reduce the over fitting. In this paper, 
is set in the range of 0.8 to 1.5. 

[Step 3] Compare each individual’s evaluation value with 
its pbests. The best evaluation value among the is denoted as 
gbest. 

[Step 4] Modify the member velocity of each individual 
according to (9) 
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where the value of φ  is set by  
 

iter
iter

×
−

−=
max

minmax
max

φφ
φφ .        (10) 

 
 When is g is 1, 1,jv  represents the change in velocity of 

controller parameter. When is 2, represents the change in 
velocity of controller parameter. )1(

,
+t
gjv  is velocity of particle 

j at iteration. 
[Step 5] If man

g
t
gj Vv >+ )1(

,  , then man
g

t
gj Vv >+ )1(

,  

If min)1(
, g
t
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g
t
gj Vv >+ )1(

, . 

[Step 6] Modify the member position of each individual 
according to (11) 
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where and represent the lower and upper bounds, 

respectively, of member of the individual . For example, when 

is 1, the lower and upper bounds of the parameter ix
are 

X1_min=[0.46, 0.48], X1_max=[0.77, 0.81], and 
X2_min=[45.0, 47.0], X2_max=[ 61.0, 63.0], respectively. 

Cell ix is composed of the following equation 

[ ]iii xxxxx φα ,,,,, max
2

min
2

max
1

min
1= . 

 
[Step 7] If the number of iterations reaches the maximum, 
then go to Step 8. Otherwise, go to Step 2. 
[Step 8] The individual that generates the latest is an 

optimal controller parameter. 
 

4. Simulation and Discussions 
 

In order to prove the learning effect of the proposed 
PSOA-FNN, we use the second-order highly nonlinear 
difference equation given as [4] 
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In Fig.5- Fig. 11, xub is max range of FNN Parameter and 

its curves represent PI_error and E_PI_error depending on 
max
gV  on FNN structure. In Fig.5 and Fig. 6, in case of 

MF=([2:2]), curve of max
gV = xub/2 is showing the best 

performance.  
Fig. 7 and Fig. 8 represent the best performance when 

membership function is MF=([3,2]) on max
gV =xub/4 and Fig. 

9 and Fig. 10 represent curves on FNN 
parameter max

gV =xub/2 and max
gV =xub/6 when membership 

function is MF=([3:3]). Table 1 is showing performance of 
PSOA to variation of membership function of FNN. Table 2 
represents performance of PSOA to variation of parameters of 
FNN. 

The results are compared with the results by particle swarm 
optimization based neural network and fuzzy-neural network, 
respectively. The results by the proposed learning method is 
showing more satisfactory than the other learning 
schemes. 

 
5. CONCLuSIONS 

 
Since Fuzzy sets and fuzzy logic can capture the 

approximate, qualitative aspects of human reasoning and 
decision-making processes, they have been considered as 
effective tools to deal with uncertainties in terms of vagueness, 
ignorance, and imprecision 

On the other hand, neural networks (NN) appeared as 
promising tools (or designing high performance control 
systems), because they have the potential for dealing with 
favorable scenarios owing to nonlinear dynamics, drift in plant 
parameters, and shifts in operating points. Since then, the 
fuzzy-neural network (FNN) learning represents one of the 
most effective algorithms to build such linguistic models for 
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control system or making decision. 
  However, in case of almost fuzzy logic, fuzzy-neural 

network, grade of membership and weighting function must be 
tuned by an approximation or experience-based tuning method. 
Up to this time, some papers are written with a couple of 
objectives to demonstrate that genetic algorithms (GAs) are an 
efficient and robust tool for generating fuzzy rules and 
weighting function.  
 

 
Fig. 3. PI-error by step of  V_max (mem=([2:2]) 

 

 
 

Fig. 4. E_ PI-error by step of  V_max (mem=[2:2]) 
 

 
Fig. 5. PI-error by step of  V_max (mem=([3:2]) 

 
Fig.6. E_ PI-error by step of  V_max (mem=[3:2]) 

 
Fig. 7. PI-error by step of  V_max PSO (mem=([3:3]) 

 
Fig. 8. E_ PI-error by step of  V_max (mem=[3:3]) 

 
The proposed learning algorithm of the PSOA-FNN is 

composed of two phases. The first phase is to find the initial 
membership functions of the fuzzy neural network model. In 
the second phase, particle swarm optimization algorithm is 
used for tuning of membership functions of the proposed 
model.  
 

Table 1. Parameter obtained by simulation 
 MF([2:2]) MF([3:2]) MF([3:3]) 

vt_max PI E_PI PI E_PI PI E_PI

xub/2 0.0379 0.2672 0.0305 0.30245 0.0345 0.292

xub/4 0.0378 0.2694 0.0340 0.29734 0.03202 0.2961

xub/6 0.0377 0.2693 0.0358 0.29532 0.0345 0.292

 
Table 2. Comparison of the results by learning methods 

Model PI E_PI MF

0.027 0.298 4 
FNN model (GA) 

0.026 0.304 6 

0.027 0.294 4 
FNN model (HCM+GA) 

0.032 0.276 6 

0.0394 0.274 4 
FNN model (CS-GA) 

0.0361 0.284 6 

0.0379 0.276 4 
FNN model(PSO) 

0.0345 0.292 6 
 

This paper proposes particle swarm optimization 
algorithm based optimal learning fuzzy-neural network 
(PSOA-FNN). Since the proposed learning scheme is 
the fuzzy-neural network structure which can handle 
linguistic knowledge as tuning membership function of 
fuzzy logic by particle swarm optimization algorithm, it 
can easily be optimization on FNN structure 
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