• Title/Summary/Keyword: fuzzy logic fusion

Search Result 55, Processing Time 0.025 seconds

Vision and force/torque sensor fusion in peg-in-hole using fuzzy logic (삽입 작업에서 퍼지추론에 의한 비젼 및 힘/토오크 센서의 퓨젼)

  • 이승호;이범희;고명삼;김대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.780-785
    • /
    • 1992
  • We present a multi-sensor fusion method in positioning control of a robot by using fuzzy logic. In general, the vision sensor is used in the gross motion control and the force/torque sensor is used in the fine motion control. We construct a fuzzy logic controller to combine the vision sensor data and the force/torque sensor data. Also, we apply the fuzzy logic controller to the peg-in-hole process. Simulation results uphold the theoretical results.

  • PDF

Force controller of the robot gripper using fuzzy-neural fusion (퍼지-뉴럴 융합을 이용한 로보트 Gripper의 힘 제어기)

  • 임광우;김성현;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.861-865
    • /
    • 1991
  • In general, the fusion of neural network and fuzzy logic theory is based on the fact that neural network and fuzzy logic theory have the common properties that 1) the activation function of a neuron is similar to the membership function of fuzzy variable, and 2) the functions of summation and products of neural network are similar to the Max-Min operator of fuzzy logics. In this paper, a fuzzy-neural network will be proposed and a force controller of the robot gripper, utilizing the fuzzy-neural network, will be presented. The effectiveness of the proposed strategy will be demonstrated by computer simulation.

  • PDF

A Cooperative Spectrum Sensing Scheme Using Fuzzy Logic for Cognitive Radio Networks

  • Thuc, Kieu-Xuan;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.289-304
    • /
    • 2010
  • This paper proposes a novel scheme for cooperative spectrum sensing on distributed cognitive radio networks. A fuzzy logic rule - based inference system is proposed to estimate the presence possibility of the licensed user's signal based on the observed energy at each cognitive radio terminal. The estimated results are aggregated to make the final sensing decision at the fusion center. Simulation results show that significant improvement of the spectrum sensing accuracy is achieved by our schemes.

Classification of Multi-sensor Remote Sensing Images Using Fuzzy Logic Fusion and Iterative Relaxation Labeling (퍼지 논리 융합과 반복적 Relaxation Labeling을 이용한 다중 센서 원격탐사 화상 분류)

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.275-288
    • /
    • 2004
  • This paper presents a fuzzy relaxation labeling approach incorporated to the fuzzy logic fusion scheme for the classification of multi-sensor remote sensing images. The fuzzy logic fusion and iterative relaxation labeling techniques are adopted to effectively integrate multi-sensor remote sensing images and to incorporate spatial neighboring information into spectral information for contextual classification, respectively. Especially, the iterative relaxation labeling approach can provide additional information that depicts spatial distributions of pixels updated by spatial information. Experimental results for supervised land-cover classification using optical and multi-frequency/polarization images indicate that the use of multi-sensor images and spatial information can improve the classification accuracy.

Fusion of Hierarchical Behavior-based Actions in Mobile Robot Using Fuzzy Logic

  • Ye, Gan Zhen;Kang, Dae-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.149-155
    • /
    • 2012
  • This paper presents mobile robot control architecture of hierarchical behaviors, inspired by biological life. The system is reactive, highly parallel, and does not rely on representation of the environment. The behaviors of the system are designed hierarchically from the bottom-up with priority given to primitive behaviors to ensure the survivability of the robot and provide robustness to failures in higher-level behaviors. Fuzzy logic is used to perform command fusion on each behavior's output. Simulations of the proposed methodology are shown and discussed. The simulation results indicate that complex tasks can be performed by a combination of a few simple behaviors and a set of fuzzy inference rules.

Non-associative fuzzy-relevance logics: strong t-associative monoidal uninorm logics

  • Yang, Eun-Suk
    • Korean Journal of Logic
    • /
    • v.12 no.1
    • /
    • pp.89-110
    • /
    • 2009
  • This paper investigates generalizations of weakening-free uninorm logics not assuming associativity of intensional conjunction (so called fusion) &, as non-associative fuzzy-relevance logics. First, the strong t-associative monoidal uninorm logic StAMUL and its schematic extensions are introduced as non-associative propositional fuzzy-relevance logics. (Non-associativity here means that, differently from classical logic, & is no longer associative.) Then the algebraic structures corresponding to the systems are defined, and algebraic completeness results for them are provided. Next, predicate calculi corresponding to the propositional systems introduced here are considered.

  • PDF

Fuzzy Neural Network Based Sensor Fusion and It's Application to Mobile Robot in Intelligent Robotic Space

  • Jin, Tae-Seok;Lee, Min-Jung;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.293-298
    • /
    • 2006
  • In this paper, a sensor fusion based robot navigation method for the autonomous control of a miniature human interaction robot is presented. The method of navigation blends the optimality of the Fuzzy Neural Network(FNN) based control algorithm with the capabilities in expressing knowledge and learning of the networked Intelligent Robotic Space(IRS). States of robot and IR space, for examples, the distance between the mobile robot and obstacles and the velocity of mobile robot, are used as the inputs of fuzzy logic controller. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a sensor fusion technique is introduced, where the sensory data of ultrasonic sensors and a vision sensor are fused into the identification process. Preliminary experiment and results are shown to demonstrate the merit of the introduced navigation control algorithm.

Obstacle Avoidance of Mobile Robot Based on Behavior Hierarchy by Fuzzy Logic

  • Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.245-249
    • /
    • 2012
  • In this paper, we propose a navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments using an ultrasonic sensor. Instead of using "sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion" method is used to govern the robot motions. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a command fusion technique is introduced, where the sensory data of ultrasonic sensors and a vision sensor are fused into the identification process.

The emotional evaluation of color pattern based on information fusion (정보융합 기법을 이용한 칼라 패턴의 감성 평가)

  • 김성환;엄경배;이준환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.23-27
    • /
    • 2000
  • In this paper, we propose an emotional evaluation model based on information fusion. This model can transform the physical features of a color pattern to the emotional features. Our proposed model consists of the fuzzy logic system and neural network model. The evaluation values produced by them were fused. The model shows comparable performances to the neural network and fuzzy logic system for the approximation of the nonlinear transforms. We believe the evaluated results of a color pattern can be used to the emotion-based color image retrievals.

  • PDF

Feature Extraction and Fusion for land-Cover Discrimination with Multi-Temporal SAR Data (다중 시기 SAR 자료를 이용한 토지 피복 구분을 위한 특징 추출과 융합)

  • Park No-Wook;Lee Hoonyol;Chi Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.145-162
    • /
    • 2005
  • To improve the accuracy of land-cover discrimination in SAB data classification, this paper presents a methodology that includes feature extraction and fusion steps with multi-temporal SAR data. Three features including average backscattering coefficient, temporal variability and coherence are extracted from multi-temporal SAR data by considering the temporal behaviors of backscattering characteristics of SAR sensors. Dempster-Shafer theory of evidence(D-S theory) and fuzzy logic are applied to effectively integrate those features. Especially, a feature-driven heuristic approach to mass function assignment in D-S theory is applied and various fuzzy combination operators are tested in fuzzy logic fusion. As experimental results on a multi-temporal Radarsat-1 data set, the features considered in this paper could provide complementary information and thus effectively discriminated water, paddy and urban areas. However, it was difficult to discriminate forest and dry fields. From an information fusion methodological point of view, the D-S theory and fuzzy combination operators except the fuzzy Max and Algebraic Sum operators showed similar land-cover accuracy statistics.