DOI QR코드

DOI QR Code

Feature Extraction and Fusion for land-Cover Discrimination with Multi-Temporal SAR Data

다중 시기 SAR 자료를 이용한 토지 피복 구분을 위한 특징 추출과 융합

  • Park No-Wook (Geoscience Information Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee Hoonyol (Department of Geophysics, Kangwon National University) ;
  • Chi Kwang-Hoon (Geoscience Information Center, Korea Institute of Geoscience and Mineral Resources)
  • 박노욱 (한국지질자원연구원 지질자원정보센터) ;
  • 이훈열 (강원대학교 지구물리학과) ;
  • 지광훈 (한국지질자원연구원 지질자원정보센터)
  • Published : 2005.04.01

Abstract

To improve the accuracy of land-cover discrimination in SAB data classification, this paper presents a methodology that includes feature extraction and fusion steps with multi-temporal SAR data. Three features including average backscattering coefficient, temporal variability and coherence are extracted from multi-temporal SAR data by considering the temporal behaviors of backscattering characteristics of SAR sensors. Dempster-Shafer theory of evidence(D-S theory) and fuzzy logic are applied to effectively integrate those features. Especially, a feature-driven heuristic approach to mass function assignment in D-S theory is applied and various fuzzy combination operators are tested in fuzzy logic fusion. As experimental results on a multi-temporal Radarsat-1 data set, the features considered in this paper could provide complementary information and thus effectively discriminated water, paddy and urban areas. However, it was difficult to discriminate forest and dry fields. From an information fusion methodological point of view, the D-S theory and fuzzy combination operators except the fuzzy Max and Algebraic Sum operators showed similar land-cover accuracy statistics.

SAR 자료의 분류에서 토지 피복 구분 분류 정확도의 향상을 위해 이 논문은 다중 시기 SAR 자료를 이용한 분류에서의 특징 추출과 정보 융합 방법론을 제시하였다. 다중 시기 SAR 센서의 산란 특성을 고려하여 평균 후방 산란계수, 시간적 변이도와 긴밀도를 특징으로서 추출하였다. 이렇게 추출된 특징의 효율적인 응합을 위해 Dempster-Shafer theory of evidence(D-S 이론)와 퍼지 논리를 적용하였다. 특히 D-S 이론의 적용시 특징 기반 mass function 할당을 제안하였고, 퍼지 논리의 적용시 다양한 퍼지 결합 연산자의 결과를 비교하였다. 다중 시기 Radarsat-1 자료에의 적용 결과, 추출된 특징들은 서로 상호 보완적인 정보를 제공할 수 있으며 수계, 논과 도심지를 효율적으로 구분할 수 있었다. 그러나 산림과 밭은 구분이 애매한 경우가 나타났다. 정보 융합 방법론 측면에서, D-S 이론과 퍼지 Max와 Algebraic Sum 연산자를 제외한 다른 퍼지 연산자는 서로 유사한 분류 정확도를 나타내었다.

Keywords

References

  1. Bruzzone, L., D. F. Prieto, and S. B. Serpico, 1999. A neural-statistical approach to multitemporal and multisource remote-sensing image classification, IEEE Transactions on Geoscience and Remote Sensing, 37(3): 1350-1359 https://doi.org/10.1109/36.763299
  2. Bruzzone, L., M. Marconcini, U. Wegmuller, and A. Wiesmann, 2004. An advanced system for the automatic classification of multitemporal SAR images, IEEE Transactions on Geoscience and Remote Sensing, 42(6): 1321-1334 https://doi.org/10.1109/TGRS.2004.826821
  3. Carr, J. R. and F. P. de Miranda, 1998. The semivariogram in comparison to the cooccurrence matrix for classification of image texture, IEEE Transactions on Geoscience and Remote Sensing, 36(6): 1945-1952 https://doi.org/10.1109/36.729366
  4. De Grandi, G. F., M. Leysen, J.-S. Lee, and D. Schuler, 1997. Radar reflective estimation using multiple SAR scenes of the same target: techniques and applications, Proceedings of IGARSS 1997, 1047-1050
  5. Dempster, A. P., 1967. Upper and lower probabilities induced by a multivalued mapping, Annals of Mathematical Statistics, 38(2): 325-339 https://doi.org/10.1214/aoms/1177698950
  6. Dubois, D. and H. Prade, 1988. Possibility theory: an approach to the computerized processing of uncertainty, Plenum
  7. Hégarat-Mascle, S. L., I. Bloch, and D. Vidal-Madjar, 1997. Application of Dempster-Shafer evidence to unsupervised classification in multisource remote sensing, IEEE Transactions on Geoscience and Remote Sensing, 35(4): 1018- 1031 https://doi.org/10.1109/36.602544
  8. Lee, H. and J. G. Liu, 2001. Analysis of topographic decorrelation in SAR interferometry using ratio coherence imagery, IEEE Transactions on Geoscience and Remote Sensing, 39(2): 223-232 https://doi.org/10.1109/36.905230
  9. Lee, J.-S., M. R. Grunes, and E. Pottier, 2001. Quantitative comparison of classification capability: fully polarimetric versus dual and single-polarization SAR, IEEE Transactions on Geoscience and Remote Sensing, 39(11): 2343-2351 https://doi.org/10.1109/36.964970
  10. Luckman, A., J. Baker, and U. Wegmuller, 2000. Repeat-pass interferometric coherence measurements of disturbed tropical forest from JERS and ERS satellites, Remote Sensing of Environment, 73(3): 350-360 https://doi.org/10.1016/S0034-4257(00)00110-3
  11. Mertikas, P. and M. E. Zerakis, 2001. Exemplifying the theory of evidence in remote sensing image classification, International Journal of Remote Sensing, 22(6): 1081-1095 https://doi.org/10.1080/01431160118597
  12. Park, N.-W., 2004. Multi-source spatial data fusion with geostatistical uncertainty assessment: applications to landslide susceptibility analysis and land-cover classification, Ph. D. Thesis, Seoul National University
  13. Quegan, S., T. L. Toan, J. J. Yu, F. Ribbes, and N. Floury, 2000. Multitemporal ERS SAR analysis applied to forest mapping, IEEE Transactions on Geoscience and Remote Sensing, 38(2): 741-753 https://doi.org/10.1109/36.842003
  14. Rottensteiner, F., J. Trinder, S. Clode, and K. Kubik, 2005. Using the Dempster-Shafer method for the fusion of LIDAR data and multi-spectral images for building detection, Information Fusion, 6(4): 283-300 https://doi.org/10.1016/j.inffus.2004.06.004
  15. Shafer, G., 1976. A mathematical theory of evidence, Princeton University Press
  16. Strozzi, T., P. B. G. Dammert, U. Wegmuller, J. M. Martinez, A. Beaudoin, J. Askne, and M. Hallikainen, 2000. Landuse mapping with ERS SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 38(2): 766-775 https://doi.org/10.1109/36.842005
  17. Zadeh, L. A., 1965. Fuzzy sets, IEEE Information and Control, 8(3): 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X