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Non-associative fuzzy-relevance logics:
strong t—-associative monoidal uninorm
B +
logics”

Eunsuk Yang

[Abstract] This paper investigates generalizations of weakening-free uninorm
logics not assuming associativity of intensiona! conjunction (so called fusion)
&, as nom-associative fuzzy-relevance logics. First, the strong t-associative
menoidal uninorm logic StAMUL and its schematic extensions are introduced
as non-associative propositional fuzzy-relevance logics. (Nen-associativity here
means that, differently from classical logic, & is no longer associative.} Then
the algebraic structures corresponding to the systems are defined, and algebraic
completeness results for them are provided. Next, predicate calculi
corresponding to the propositional systems introduced here are -considered.
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1. Introduction

The present author [25, 26] has investigated the R of
Relevance with mingle (RM) and several uninorm logics such as
(DUL ((Involutive) uninorm logic), and (I)UML ((Involutive)
uninorm mingle logic) introduced by Metcalfe and Montagna [18,
19], as fuzzy-relevance logics. The aim of this paper is to
introduce non-associative generalizations of such fuzzy-relevance
logics. (Non-associativity here means that, differently from
classical lokgic, intensional conjunction & is no longer associative.)

First recall that all the fuzzy-relevance systems above have
associative infensional conjunction & and such associative logics
and algebras have been studied intemsively in the literature. On
the other hand, logical systems with non-associative & and
corresponding algebras have been very little investigated. At any
rate non-associative Lambek calculi are good examples of
non-associative systems (see [3, 6, 15, 20, 21]). But these
systems are neither fuzzy nor relevant. Non-associative rings (e.g.
Lie rings and Lie algebras) are good examples of non-associative
algebras. But their non-associative operation is not logical
operation, but multiplication.

Fortunately, MICA {Monotonic Identity Commutative
Aggregation) operators, which do not require associativity, have
been introduced (see [22, 23, 24]), and a non-associative
generalization of MV-algebras is recently further introduced (see
[4]). Note that Yager showed that MICA operators constitute the
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basic operators needed for aggregation in fuzzy system modeling.
Then it is a natural question: can we introduce non-associative
generalizations of RM and the above uninorm logics?

We in fact have further practical reasons for requiring
non-associative &: first, when we think of & as intensional
conjunction, some &-sentences in argument are not associative.
Consider “and” as compatibility. Then ¢ and y & X may not be
compatible with each other, even though ¢ & w and X are. Let
®, v, and X be “This color changes”, “This color is red”, and
“This color is blue”, respectively, and both “This color changes
and this color is A” and “This color is A and this color
changes” mean that this A color changes into another one. Let
the comma in the compound sentence play the role of
parenthesis. Then we can think that “This color changes and this
color is red, and this color is blue” means that this red color
changes into blue one. But from this sentence we can not infer
“This color changes, and this color is red and blue” because “this
color is red” and “this color is blue” are incompatible with each
other (and so there is no color to change). We are in fact
considering non-associative & (which will be introduced here) as
this kind of compatibility. Second, some literature have recently
shown that areas such as subjective probabilities, quantum
mechanics, neuroscience, etc. require non-associativity (see [2, 8,
9, 12, 13, 16)).

MICA operation is a variant of the concept of uninorm
obtained by removing the associativity condition in its definition.

The present author [27] have recently introduced such operations
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with several weak versions of associativity, and investigated their
properties. In particular, he defined strong t-associative (sta-)
uninorm as a uninorm having strong t-associativity in place of
associativity. We here investigate logical systems (based on
sta-uninorms) as non-associative generalizations of RM and the
above uninorm logics. This will satisfy the purpose because such
systems can be regarded as both fuzzy-relevant and

non-associative.

*%

In this paper we first introduce the sta-monoidal uninorm logic
StAMUL and its schematic extensions as non-associative
fuzzy-relevance logics. We usually call a system relevant if it
satisfies the strong relevance principle (SRP) in [1] that ¢ — w
is a theorem only if ¢ and y share a propositional variable, and
sometimes if it satisfies the weak relevance principle (WRP) in
[71 that & — y is a theorem only if either (i) ¢ and y share a
propositional variable or (ii) both ~¢ and w are theorems. But
StAMUL, the most basic non-associative fuzzy-relevance logic
defined here, is neither strongly relevant nor weakly relevant in
the above senses because it proves such formulas as (a) (¢ A
© =0 =WV w0, ie (@A ~0) > ¥V ~y).
(Note that since StAMUL does not prove (EM) ¢ V ~¢, a
does not satisfy WRP in StAMUL.) Thus, for the relevance of
StAMUL and its extensions, we suggest weakenings of SRP and
WRP as follows:!)

1) Since in StAMUL ¢ and w may share a constant in place of a propositional
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(Fuzzy strong relevance principle, FSRP) & — 1w is a theorem
only if ¢ and y share a propositional variable or constant.
(Fuzzy weak relevance principle, FWRP) ¢ — 1y is a theorem
only if either (i) ¢ and w share a propositional variable or
constant, or (ii) both ~® and y are theorems.

StAMUL and its extensions instead satisfy FWRP, and so are
relevant in the sense that they satisfy FWRP.

FSRP and FWRP may be regarded as fuzzy versions of SRP
and WRP, respectively, in the sense that logics with the
“prelinearity” axiom (PL") (see A15 below) usually prove a and
axiomatizations for several fuzzy logics are obtained simply by
adding (PL") to a known logic because (roughly speaking) it
ensures that the logic is characterized by linearly ordered algebras.
Let L be an StAMUL, i.e., a schematic extension of StAMUL. L
is more exactly fuzzy in the sense that it satisfies the fuzzy
condition (of a logic) of Cintula in [5] that L is complete with
respect to (w.rt) linearly ordered L-algebras. After defining
algebraic structures corresponding to the systems, we shall provide
algebraic completeness results for the systems. This will ensure
that they are all fuzzy in Cintula's sense. We next present the
predicate calculi corresponding to the propositional systems
considered here.

StAMUL and its extensions introduced in section 2 are not
merely fuzzy-relevant, but non-associative in the sense that they
do not prove associativity. Therefore, they all can be called
non-associative fuzzy-relevance logics.

For brevity, by L (L-algebra resp) we shall ambiguously

variable (see a), we add “or constant” to SRP and WRP.
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express the systems ((corresponding) algebras resp) defined in
section 2 (3 resp) all together, if we do not need distinguish
them, but context should determine which system (algebra resp) is
intended; and by L-algebra (i.e. boldface L-algebra), we mean
L-algebra satisfying soundness (see Definition 3.5). Also, for
convenience, we shall adopt the notation and terminology similar
to those in [5, 10, 11, 14], and assume being Vfamilia‘r With théfn

(together with results found in them).

2. Syntax

Logical systems we shall define in this section are based on a
countable propositional language with formulas FOR  built
inductively as usual from a set of propositional variables VAR,
binary connectives —, &, A, V, and constants F, f, t.‘ Further

definable connectives are:

dfl. ~¢ = ¢ — f, ,
df2. ¢ & v = (¢ = ¢) A (y — O).

We may define t as f — f. We moreover define ¢y as ¢ A ¢
For the remainder we shall follow the customary notatioﬁ and
terminology. We use the axiom systems to provide a consequence
relation. A ,

We start with the following axiom schemes and rules for the

strong t-associative monoidal uninorm logic StAMUL, the basic
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non-associative fuzzy-relevance logic defined here.

Definition 2.1 StAMUL consists of the following axiom
schemes and rules:

Al

A2
A3.
A4,
AS.
Ao,

A7
AB.
A9.

. ¢ — & (self-implication, SI)

(@ Ny >0 (¢ A y) — y (A-elimination, A-E)
(=) (0—X)) = (d=(wAX)) (A-introduction, A-T)
d— (d V ), y-— (¢ V y) (V-introduction, V-I)
(e—=X)A(w=x)) = (PVw)—x) (V-elimination, V-E)
DAV O~ (QAPV(DAX)) (A V-distributivity, AV
-D)

F — & (ex falsum quodlibet, EF)

¢ — T (Verum ex quolibet, VE)

(P& (w&x)) < (d&y)&X) (strong t-associativity, sAS:)

A10. (0 & ¥) — (y & §) (&-commutativity, &-C)

Al

l.(p & t) < ¢ (push and pop, PP)

AlZ (g = X = (O — w) — (¢ — X)) (t-prefixing, PF)
AL (0 = w) = (W — X) = (& — X)) (tsuffixing, SFy)
Ald. (& = (¥ —= X « (¢ & w) — X} (tresiduation,

RE)

A15. for each n, (b — vy V (v — @) ("~prelinearity, PL")

® — vy, & - w (modus ponens, mp)
d, v - ¢ A w (adjunction, adj).

Definition 2.2 A logic is a schematic extension of an arbitrary

logic

L if and only if (iff) it results from L by adding (finitely

or infinitely many) axiom schemes. L is a strong t-associative
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monoidal uninorm logic (StAMUL) iff L is a schematic extension
of StAMUL. In particular, the following are non-associative
fuzzy-relevance logics extending StAMUL:
¢ Involutive StAMUL IStAMUL is StAMUL plus
(DNE) ~~¢ — ¢.
e [dempotent StAMUL StAMUIL is StAMUL plus
(D) ¢ « (o & ¢).
o Involutive StAMUIL IStAMUIL is StAMUIL plus (DNE).

For easy reference we let Ls be a set of logical systems
defined previously.

Definition 2.3 Ls = {StAMUL, IStAMUL, StAMUIL,
IStAMUIL}.

In L (€ Ls), f can be defined as ~t and vice versa, In L
with (DNE) (briefly IL), A is defined using ~ and V.

“A theory over L is a set T of formulas. A proof in a sequence
of formulas whose each member is either an axiom of L or a
member of T or follows from some preceding members of the
sequence using the rules (mp) and (adj). T + ¢, more exactly T
. &, means that ¢ is provable in T w.rt. L, ie., there is an
L-proof of ¢ in T. The relevant (local) deduction theorem
(R(L)DT) for L is as follows:

Proposition 2.4 Let T be a theory, and ¢, y formulas.
(i) RLDT) T U {&} . w iff there is n such that T + "
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— Y.
(ii) (RDT) Let L be an StAMUL with (ID). T U {d} Fi v
iff T Fo 0 — w.

Proof: Proof of (i) is as usual. (ii) is just Enthymematic
Deduction Theorem (see [17]). ]

A theory T is inconsistent if T  F; otherwise it is consistent.

13 ”

For convenience, “~”, “A”, “V” and “—” are used

ambiguously as propositional connectives and as algebraic

operators, but context should make their meaning clear.

Remark 2.5 UL, IUL, UML, RM, and IUML are the systems
as follows:

o UL is StAMUL plus

PF) (v > x) = (= w) = (& — X)); and
(RE) (¢ = (v = x)) < (? & v) — X).

e IUL is UL plus (DNE).

e UML is UL plus (ID).

e RM is UML plus (DNE).

o IUML is RM plus t <> f (fixed-point, FP).

Note that UL proves (AS) (¢ & (¢ & X)) <« (¢ & w) & X)
and so its extensions above do. Thus StAMUL, IStAMUL,
StAMUIL, and IStAMUIL can be regarded as non-associative
generalizations of UL, IUL, UML, and RM (or IUML),
respectively.
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3. Semantics

Suitable algebraic structures for Ls are obtained as varieties of
isotonic commutative strong t-associative monoidal residuated

lattices.

Definition 3.1 An isotonic commutative strong t-associative
monoidal residuated lattice (icstamr-lattice) is a structure A = (A,
T, L, Ty L A, V, * —) such that:

@ A, T, L, A, V) is a bounded distributive lattice with

top element T and bottom element L.
(1) (A, *, T satisfies for all x, y, z € A,
(@ x *y =y * x (commutativity)
(b) T¢* x = x (identity)
() x < y implies x * z < y * z (isotonicity)
(d)x < Teimplies x * (y *2) = (x *y) * z
(strong t-associativity)
my < x —-ziff x *y <z foral x,y,z € A

(residuation).

We call (A, *, T, satisfying (II-b, d) a strong t-associative
(sta-) monoid. Thus (A, *, T satisfying (Il-a, b, ¢, d) is an
isotonic commutative sta-monoid. (A, *, T satisfying (II) and
(ID) x = x * x is an idempotent isotonic commutative
sta-monoid. (A, *, T satisfying (II) and (associativity) x * (y *

z) = (x *y)*zon [0, 1] is a uninorm and this is a t-norm in
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case T¢= T.

To define an icstamr-lattice we may take in place of (Il-c, d)

Cyx*(yVzy=(x*y V (x * z) and

(d) x¢* (y * z) = (x¢ * y) * z, respectively; and
in place of (Il) a family of equations as in [14].

In an icstamr-lattice * need not be associative so that (A, *, T
1) does not necessarily form a commutative semigroup. But since
X ¥ (x *x)=(x*x)*x by (Il-a), * is still associative in case
Xx *y=y*xandy=x * x. This allows us to write iterated
*'s without brackets w.r.t. the same element(s). By x", we denote
x * - * x 1 factors. Using — andVJ_f we can define T, as L
i > Ly and ~ as in (dft). Then, an L-algebra corresponding to
L is defined as follows.

Definition 3.2 (StAMUL-algebra) An StAMUL-algebra is an
icstamr-lattice satisfying the condition: for all x, y and for each n
(=D, 0" Te< x =%V = 0%

In an analogy to Definition 3.2, we can define several algebras
corresponding to the systems mentioned in Definition 2.3.

For L (€ Ls), L-algebra (defined in 3.2) is said to be linearly
ordered if the ordering of its algebra is linear, ie, x < y ory
< x (equivalently, x A y = x or x A y = y) for each pair x,
y.

Definition 3.3 (Evaluation) Let & be an algebra. An

d-evaluation is a function v : FOR — d satisfying:
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v(® = ¥) = V(D) — v(v),
V(O A ) = V(D) A v(y),
V(o V w) = v(d) V v(y),
V(o & w) = v(P) * v(v),

vT) =T,
v(F) = 1,
vif) = L,

(and hence v(~®) = ~v(P) and v(t) = T).

Definition 3.4 Let § be an L-algebra, T a theory, ¢ a formula,
and K a class of L-algebras.

(i) (Tautology) & is a T,tautology in d, briefly an o-tautology
(or d-valid), if v(¢) > T for each d-evaluation v.

(il) (Model) An o-evaluation v is an f-model of T if v(}p) >
Ty for each ¢ & T. By Mod(T, 4), we denote the class
of {-models of T.

(ii)) (Semantic consequence) ¢ is a semantic consequence of T
w.rt. K, denoting by T Ex ¢, if Mod(T, 4) = Mod(T U
{d}, &) for each f € K

In the next definition, we shall use the notational convention

mentioned in the last paragraph of section 1.

Definition 3.5 (L-algebra) Let &, T, and ¢ be as in Definition
3.4. & is an L-algebra iff whenever ¢ is L-provable in T (ie. T

Fo ¢, L an L logic), it is a semantic consequence of T w.rt.
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the set {d} (ie. Tk, 4 a corresponding L-algebra). By
MOD”)(L), we denote the class of (linearly ordered) L-algebras.
We writt T "L & in place of T Ewmon" i ©.

4. Algebraic completeness

Let A be an StAMUL-algebra. We first note that the
nomenclature of the prelinearity condition is explained by the

following subdirect representation theorem.

Proposition 4.1 Each StAMUL-algebra is a subdirect product of
linearly ordered StAMUL-algebras.

Proof: Its proof is as usual. []

We next show that classes of provably equivalent formulas
form an L-algebra. Let T be a fixed theory over L. For each
formula ¢, let [¢p]r be the set of all formulas y such that T
¢ <> y (formulas T-provably equivalent to ®). Ar is the set of
all the classes [®]r. We define that [¢]r — [w]r = [¢ — w]r,
[Or * [w]lr = [& & wlr, [O)r A [w]r = [& A wr, [O]r V
(wlr = [0 V wl, L = [Flr, T = [Th, T« = [t], and 1y =
(flr. By 4r, we denote this algebra.

Proposition 4.2 For T a theory over L, At is an L-algebra.
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Proof: Note that A2 to A6 ensure that A, V, and — satisfy
(I) in Definition 3.1; that A9 to All, and the theorem (ITy) (}
= ¥ — ((® & X) — (¥ & X)) ensure that & satisfies (II) (a)
- (d); that Al4 ensures that (III) holds; and that Al5 ensures that
(pl") holds. It is obvious that []r < [w]r iff T Fi & < (& A
y) iff T . ¢ — w. Finally recall that At is an L-algebra iff T
Fi v implies T &=, , and observe that for ¢ in T, since T +
L t = &, it follows that [t]r < [®]r. Thus it is an L-algebra. [

Theorem 4.3 (Strong completeness) Let T be a theory, and ¢ a
formula. T +y ¢ iff T = ¢ iff T EL ¢

Proof: (i) T . ¢ iff T . ¢. Left to right follows ffom
definition. Right to left is as follows: from Proposition 4.2, we
obtain At € MOD(L), and for Ar-evaluation v defined as v(w)
= [y]r, it holds that v € Mod(T, Ar). Thus, since from T k.
® we obtain that [¢]r = v(¢) = T, T kL t — ¢. Then, since
T kot by (mp) T 1 ¢, as required.

(i) T = ¢ iff T E'L ¢. It follows from Proposition 4.1. [J

5. LV: the first order extension of L

The completeness theorems for-fuzzy predicate logics presented
in [I1, 14] may generalize for the present situation.

A trivial generalization of those of section 6 in [11] and
Chapter V in [14] gives the notions of a language, its
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interpretations, and formulas for L'V as follows:

Given a linearly ordered L-algebra A, an A-interpretation, 1.e.,
an A-structure, of a language consisting of some predicates P &
Pred and constants ¢ & Const is a structure M = (M, (rp)pepreds
(Me)eccons), Where M = @, 1o : M™ — A, ar(P) the arity of P,
and m. € M (for each P & Pred, ¢ & Const).

Let L be a predicate language and let M be an A-structure for
L. An M-evaluation of object variables is a mapping e assigning
to each object variable x an element e(x) € M. Let e, €' be two
evaluations. ¢ =, ¢' means that e(y) = ¢'(y) for each variable y
distinct from x.

The value of a term given by M,e is defined as follows: |x|u.
= e(x) and |c|we = mc. The (truth) value lAlAMx of a formula
{(where e(x) & M for each variable x) is defined inductively: for
A being P(x, =+ , ¢, =), [P(x, = , ¢, ...)LAM& = t(e(x), - ,
me, '), the value commutes with connectives, and )(\7)()A}AM,e =
inf{)AIAM\e-: e =, ¢'} if this infimum exists, otherwise undefined,
and similarly for Ix and sup. M is A-safe if all infs and sups
needed for definition of the value of any formula exist in A, ie,
IAl*me is defined for all A, e.

Let A be a formula of a language L and let M be a safe
Asstructure for L. The truth value of A in M is |Al'w =
inf{|A|*w.: ¢ M-evaluation}.

A formula A of a language L is an A-tautology if |Aly = Tu
for each safe A-structure M, ie., |Al*w. > T for each safe
A-structure M and each M-evaluation of object variables.

The axioms of LV are those of L plus the following set of
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axioms for quantifiers (taken by Hajek [14] as those of the basic
predicate logic BLY):

(V1) (VXA(X) — A0 (t substitutable for x in A(x))
(3 A1) — (Ix)A(x) (t substitutable for x in A(x))
{(¥2) (Yx}A — B} — (A — (Vx)B) (x not free in A)
{(32) (VXA — B) — ((Ix)A — B) (x not free in B)
(V3) (VXA V B} — ((Vx)A V B) (x not free in B)

Rules of inference for LYY are MP, AD, and generalization
(GN), ie., from A infer (Vx)A. (Note that if L'V has involutive
negation (ie. LY is ILV), one quantifier is definable from the
other one and the negation ~, for instance, (Ix)A = ~(Vx)~
A. Thus the above set of axioms for quantifiers could be
simplified, i.e., (V3), (3 1), and (32) become provable as in the
Lukasiewicz predicate logic LY (cf. see Remark 5.4.2 in [14]).

Proposition 4.1 (i) The axioms (V1), (V2), (V¥3), (31), and
(32) are A-tautologies for each linearly ordered L-algebra A. (ii)
The rules MP, AD, and GN preserve A-tautologyhood.

Proof (i) By Lemmas 5.1.9 in [14]. ;

(i) MP and GN are by Lemma 5.1.10 in [14]. Thus, for L‘v{
we need just to consider that the rule AD  preserves
A-tautologyhood. For AD, we show that

(1) for any formulas A, B, safe A-structure M, and evaluation
e Awe ALBP'we < JA A B Pug thus, if [Al'we [Bl'we =

Tu, then A A B ['we = Tu, and
(2) consequently, |Al*w A [Bl*w < |JA A B (*w; thus if A, B



Non-associative fuzzy-relevance. logics 105

are > Tu-frue in M, then A A B is.

(1) is as in propositional calculus. To prove (2) put |Alw = ay,
infyay = a, |Blw = bw, and infyby = b. We have to show that
infyay, A infyb, < infy(aw A by) (indices A, M deleted, w runs
over all evaluations =, e¢). Since LV proves (Vx)(AAB) <
((VX)AA(VxX)B) (see Corollary 5.1.22 (17) in [14]) and thus
infy(aw A by) = infyaw A infuby, it is immediate. []

Definitions of a theory T over LV are almost the same as L.
We need just to consider such definitions in M. Let A be a
linearly ordered L-algebra and let M be a safe A-structure for the
language of T. M is an A-model of T if |A|*'y > T in each A
€ T. T is linear if for each pair A, B of formulas, T -+ A —
B or T - B — A. Then, Proposition 4.1 ensures that LV is

sound w.r.t. linearly ordered L-algebras.

Proposition 4.2 (Soundness) Let T be a theory in the language
of T over LV and let A be a formula of T. If T .y A, then
T E'L A, ie, |JAl*w > Tu for each linearly ordered L-algebra
A and each A-model M of T.

Proof By induction on the length of a proof. []

To investigate completeness for LY, we have the same
definition on “consistency” of a theory T as in L. We moreover
define the Henkinness of T (over LV) as follows: T is Henkin if

for each closed formula of the form (Vx)A(x) unprovable in T,
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ie., T ¥ (Vx)A(x), there is a constant ¢ in the language of T
such that A(c) is unprovable in T, ie., T ¥ A(c). -

For each theory T over LV, let At be the algebra of classes
of T-equivalent closed formulas with the usual operations. It is
clear that At is an L-algebra. Let T be Henkin. Then the
canonical Ar-structure is safe and we have [}]r = |CI)|ATMT and -so:
M: is an Ar-model of T. Hence, since each theory can. be
extended into linear Henkin theory, the completeness for LV

below is straightforward.

Lemma 4.3 For each theory T and each closed formula A, if T
¥ A, then there is a linear Henkin supertheory T' of T such that
T ¥ A.

Proof See Lemma 5.2.7 in [14]. [J

Lemma 4.4 For each linear Henkin theory T and each closed
formula A, if T ¥ A, then there is a linearly. L-algebra A and
A-model M-of T such that |Al'w < T

Proof By Lemma 5.2.8 in [14]. []

By using Lemmas 4.3 and 4.4, we can show the completeness
for LY as follows.

Theorem 4.5 (Completeness) Let T be a theory over LV and
let A be a formula. T Fry AIff T E'LA.
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