• Title/Summary/Keyword: fuzzy inference

Search Result 1,296, Processing Time 0.023 seconds

A Simple Hierarchical fuzzy Controller (단순한 형태의 계층 퍼지 제어기)

  • Joo, Moon-G.;Lee, Jin-S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.505-507
    • /
    • 1998
  • In this paper, a simple hierarchical fuzzy inference system using structured Takagi-Sugeno type fuzzy inference units(SFIUs) is proposed. The number of fuzzy rules of the proposed HFIS is minimum in the sense of that only the number of partitions of each system variables, not of intermediate outputs of layered fuzzy controllers, are concerned. And resulted number of fuzzy rules is a summation of partition in each system variables. Gradient descent algorithm is used for adaptation of fuzzy rules. The ball and beam control is performed in computer simulation to illustrate the performance of the proposed controller.

  • PDF

Lyapunov-based Fuzzy Queue Scheduling for Internet Routers

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.317-323
    • /
    • 2007
  • Quality of Service (QoS) in the Internet depends on queuing and sophisticated scheduling in routers. In this paper, we address the issue of managing traffic flows with different priorities. In our reference model, incoming packets are first classified based on their priority, placed into different queues with different capacities, and then multiplexed onto one router link. The fuzzy nature of the information on Internet traffic makes this problem particularly suited to fuzzy methodologies. We propose a new solution that employs a fuzzy inference system to dynamically and efficiently schedule these priority queues. The fuzzy rules are derived to minimize the selected Lyapunov function. Simulation experiments show that the proposed fuzzy scheduling algorithm outperforms the popular Weighted Round Robin (WRR) queue scheduling mechanism.

Fuzzy Causal Knowledge-Based Expert System

  • Lee, Kun-Chang;Kim, Hyun-Soo;Song, Yong-Uk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.461-467
    • /
    • 1998
  • Although many methods of knowledge acquisition has been developed in the expert systems field, such a need for causal knowledge acquisition has not been stressed relatively. In this respect, this paper is aimed at suggesting a causal knowledge acquisition process, and then investigate the causal knowledge-based inference process. A vehicle for causal knowledge acquisition is FCM (Fuzzy Cognitive Map), a fuzzy signed digraph with causal relationships between concept variables found in a specific application domain. Although FCM has a plenty of generic properties for causal knowledge acquisition, it needs some theoretical improvement for acquiring a more refined causal knowledge. In this sense, we refine fuzzy implications of FCM by proposing fuzzy implications of FCM by proposing fuzzy causal relationship and fuzzy partially causal relationship. To test the validity of our proposed approcach, we prototyped a causal knowledge-driven inference engine named CAKES and then experime ted with some illustrative examples.

  • PDF

Analysis on Dynamical Behavior of the Crisp Type Fuzzy controller (크리스프 타입 퍼지 제어기의 동특성 해석)

  • 권오신;최종수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.67-76
    • /
    • 1995
  • In recent research on the fuzzy controller, the crisp type fuzzy controller model, in which the consequent part of the fuzzy control rules are crisp real numbers instead of fuzzy sets, due to its simplicity in calculation, has been widely used in various applications. In this paper we try to analyze the dynamical behavior of the crisp type fuzzy controller with both inference methods of min-max compositional rule and product-sum inference. The analysis reveals that a crisp type fuzzy controller behaves approximately like a PD controller.

  • PDF

Improvement of Control Response Characteristics for Power Facility using the Adaptive Sizing of Fuzzy Inference Method (전력설비의 제어 응답특성 개선을 위한 퍼지 추론 기법의 적응조정)

  • Lee, Hyun-Jae;Kim, Dong-Eun;Shon, Jin-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1699-1704
    • /
    • 2018
  • In this paper, proposed a method to improve of control characteristics for power facility using the adaptive sizing of fuzzy inference method. In the use of the controller based the fuzzy logic, a basic mamdani fuzzy controller is applied. However, when the maximum value and the minimum value have to taken, the fuzzy controller can not take a normal value because of formalized grouping form. In this paper, we combine the conventional methods with single valued sets to compensate for the disadvantage caused by the mamdani method control. Simulation results show that the proposed method has better overshoot and steady state arrival time than the conventional control method.

A Study on SIL Allocation for Signaling Function with Fuzzy Risk Graph (퍼지 리스크 그래프를 적용한 신호 기능 SIL 할당에 관한 연구)

  • Yang, Heekap;Lee, Jongwoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.145-158
    • /
    • 2016
  • This paper introduces a risk graph which is one method for determining the SIL as a measure of the effectiveness of signaling system. The purpose of this research is to make up for the weakness of the qualitative determination, which has input value ambiguity and a boundary problem in the SIL range. The fuzzy input valuable consists of consequence, exposure, avoidance and demand rate. The fuzzy inference produces forty eight fuzzy rule by adapting the calibrated risk graph in the IEC 61511. The Max-min composition is utilized for the fuzzy inference. The result of the fuzzy inference is the fuzzy value. Therefore, using the de-fuzzification method, the result should be converted to a crisp value that can be utilized for real projects. Ultimately, the safety requirement for hazard is identified by proposing a SIL result with a tolerable hazard rate. For the validation the results of the proposed method, the fuzzy risk graph model is compared with the safety analysis of the signaling system in CENELEC SC 9XA WG A10 report.

Fuzzy Inference Systems Based on FCM Clustering Algorithm for Nonlinear Process (비선형 공정을 위한 FCM 클러스터링 알고리즘 기반 퍼지 추론 시스템)

  • Park, Keon-Jun;Kang, Hyung-Kil;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.4
    • /
    • pp.224-231
    • /
    • 2012
  • In this paper, we introduce a fuzzy inference systems based on fuzzy c-means clustering algorithm for fuzzy modeling of nonlinear process. Typically, the generation of fuzzy rules for nonlinear processes have the problem that the number of fuzzy rules exponentially increases. To solve this problem, the fuzzy rules of fuzzy model are generated by partitioning the input space in the scatter form using FCM clustering algorithm. The premise parameters of the fuzzy rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is expressed in the form of polynomial functions and the coefficient parameters of each rule are determined by the standard least-squares method. And lastly, we evaluate the performance and the nonlinear characteristics using the data widely used in nonlinear process.

A Timed Fuzzy Petri Net Model for General Purpose Real-time Fuzzy Control (범용 실시간 퍼지 제어를 위한 시간형 퍼지 패트리넬)

  • Lee, Gang-Su;Kim, So-Yeon;Yun, Jeong-Mo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.3
    • /
    • pp.543-563
    • /
    • 1996
  • In this paper, we propose a Timed Fuzzy Petri Net(TFPN) model as a new model of real-time fuzzy control. The TFPN model, which is useful for fuzzy inference and fuzzy control is an integrated model of Timed PetriNet and Fuzzy Petri Net. Additionally, a Timed Fuzzy Control Language is defined as a textual specification model of fuzzy control rues, and proposed a TFPN modeling method. The TFPN model is a Petri Net formalism of fuzzy control systems. Execution rule is consisted of marking(i.e,fuzzyfication) and firing(i.e,inference and defuzzyfication) procedures. A simple case work by using TFPN model shows us computing time of inference and defuzzyfication is low and uncertainty and visibility of fuzzy control rule are modeled effectively.

  • PDF

Utilizing Soft Computing Techniques in Global Approximate Optimization (전역근사최적화를 위한 소프트컴퓨팅기술의 활용)

  • 이종수;장민성;김승진;김도영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF

Design of Solving Similarity Recognition for Cloth Products Based on Fuzzy Logic and Particle Swarm Optimization Algorithm

  • Chang, Bae-Muu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4987-5005
    • /
    • 2017
  • This paper introduces a new method to solve Similarity Recognition for Cloth Products, which is based on Fuzzy logic and Particle swarm optimization algorithm. For convenience, it is called the SRCPFP method hereafter. In this paper, the SRCPFP method combines Fuzzy Logic (FL) and Particle Swarm Optimization (PSO) algorithm to solve similarity recognition for cloth products. First, it establishes three features, length, thickness, and temperature resistance, respectively, for each cloth product. Subsequently, these three features are engaged to construct a Fuzzy Inference System (FIS) which can find out the similarity between a query cloth and each sampling cloth in the cloth database D. At the same time, the FIS integrated with the PSO algorithm can effectively search for near optimal parameters of membership functions in eight fuzzy rules of the FIS for the above similarities. Finally, experimental results represent that the SRCPFP method can realize a satisfying recognition performance and outperform other well-known methods for similarity recognition under considerations here.