• Title/Summary/Keyword: fuzzy closed-loop systems

Search Result 127, Processing Time 0.02 seconds

Observer-based sampled-data controller of linear system for the wave energy converter

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.275-279
    • /
    • 2011
  • In this paper, an observer-based sampled-data controller of linear system is proposed for the wave energy converter. Based on the sampled-data observer, the controller is design. In the closed-loop system with controller, it obtains the norm inequality between the continuous-time state variable and the discrete-time one. Using the norm inequality, sufficient condition is derived for the asymptotic stability of the closed-loop system and formulated in terms of linear matrix inequality. Finally, the wave energy converter simulation is provided to verify the effectiveness of the proposed technique.

Design of the Robust Controller for the Discrete-Time Nonlinear System with Time-Delay Via Fuzzy Approach (퍼지 기법을 이용한 시간 지연을 가지는 이산시간 비선형 시스템에 대한 강인 제어기 설계)

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2723-2725
    • /
    • 2005
  • In this paper, a robust $H{\infty}$ stabilization problem to a uncertain discrete-time nonlinear systems with time-delay via fuzzy static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-delayed state. Then parallel distributed compensation technique is used for designing of the robust fuzzy controller. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H{\infty}$ controllers are given in terms of linear matrix inequalities via similarity transform and congruence transform technique.

  • PDF

Stabilization of nonlinear systems using compensated fuzzy controllers (보상 퍼지 제어기를 이용한 비선형 시스템의 안정화)

  • 강성훈;박주영
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.5
    • /
    • pp.43-54
    • /
    • 1997
  • The objective of this paper is to present a controller-design method that can guarantee the global stability for nonlinear systems described by takagi-sugeno fuzzy models, and to apply the method to a typical nonlinear control problem. The presented method gives us a compensated fuzzy controller through the following major steps: First, if each local linear model of a given takagi-sugeno fuzzy system does not have the same input matrix, the method expands the system into the one with a method finds a takagi-sugeno fuzzy controller guaranteeing the global stability of the closed loop via solving relevant linear matrix inequalities. Compared to the conventional PDC (paralled distributed compensation) technique, the presented method has an advantage that trial-and-errors to check the global stability are not necessary. An illustrative simulation on the control of inverted pendulum is performed to demonstrate the applicability of the presented method, and its results show that a controller satisfying the global stability and robustness can be obtained by the method.

  • PDF

Adaptive Fuzzy Sliding-Mode Controller for Nonaffine Nonlinear Systems (비어파인 비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Lyoo, Young-Jae;Moon, Chae-Joo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.697-700
    • /
    • 2005
  • An adaptive fuzzy sliding-mode controller (SMC) for uncertain or ill-defined single-input single-output (SISO) nonaffine nonlinear systems is proposed. By using the universal approximation property of the fuzzy logic system (FLS), it is tuned on-line to cancel the unknown system nonlinearity. We adopt a self-structuring FLS to guarantee global stability of the closed-loop system rather than semi=global boundedness. The control and adaptive laws are derived so that the estimated fuzzy parameters are bounded and the sliding condition is satisfied.

  • PDF

Fuzzy Controller for Nonlinear Systems Using Pole Placement in a Specified Disk (지정된 디스크 영역 내 극 배치법을 이용한 비선형 시스템 제어를 위한 퍼지 제어기)

  • Lee, Sang-Jun;Lee, Nam-Su;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2302-2304
    • /
    • 2000
  • This paper addresses a fuzzy controller for nonlinear systems control using a pole placement in a specified disk. In the method, we linearize a nonlinear plant about nominal operating points and represent it using TS fuzzy model and formulate the controller rules. A feedback control law for a local model is determined using a pole placement in a specified disk(${\alpha}$:center ${\gamma}$:radius} region so that the closed loop system is stable. A nonlinear system can be controlled by combining fuzzy controller with a pole placement scheme which can be used to modify the transient response such as damping ratio and overshoot. A stability of overall fuzzy control system is guaranteed in the Lyapunov sense. Finally, it is shown that the proposed method is feasible through a computer simulation.

  • PDF

New Sufficient Conditions to Intelligent Digital Redesign for the Improvement of State-Matching Performance (상태-정합 성능 향상을 위한 지능형 디지털 재설계에 관한 새로운 충분조건들)

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.293-296
    • /
    • 2006
  • This paper presents new sufficient conditions to an intelligent digital redesign (IDR). The purpose of the IDR is to effectively convert an existing continuous-time fuzzy controller to an equivalent sampled-data fuzzy controller in the sense of the state-matching. The state-matching error between the closed-loop trajectories is carefully analyzed using the integral quadratic functional approach. The problem of designing the sampled-data fuzzy controller to minimize the state-matching error as well as to guarantee the stability is formulated and solved as the convex optimization problem with linear matrix inequality (LMI) constraints.

  • PDF

Nonlinearity analysis with fuzzy inference and its implementation to auto-tuning (퍼지추론을 이용한 비선형성 해석 및 자동동조의 구현)

  • 변황우;이은철;이동진;김낙교;남문현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.206-211
    • /
    • 1993
  • This paper presents a new identification method which utilizes fuzzy inference in parameter identification. The proposed system has an additional control loop where a real plant is replaced by a plant model. The control system to be designed is to satisfy the following specifications: 1) It has zero steady-state error. 2) It has adequate damping characteristics. 3) 1),2) satisfied, it has a shortest rise-time. Fuzzy rules describe the relationship between comparison results of the features and magnitude of modification in the model parameter values. This method is effective in auto-tuning because the response of the closed loop is verified. The proposed method is tested in simulation for several plants with high-order lags and dead-times.

  • PDF

On the Design of Simple-structured Adaptive Fuzzy Logic Controllers

  • Park, Byung-Jae;Kwak, Seong-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.93-99
    • /
    • 2003
  • One of the methods to simplify the design process for a fuzzy logic controller (FLC) is to reduce the number of variables representing the rule antecedent. This in turn decreases the number of control rules, membership functions, and scaling factors. For this purpose, we designed a single-input FLC that uses a sole fuzzy input variable. However, it is still deficient in the capability of adapting some varying operating conditions although it provides a simple method for the design of FLC's. We here design two simple-structured adaptive fuzzy logic controllers (SAFLC's) using the concept of the single-input FLC. Linguistic fuzzy control rules are directly incorporated into the controller by a fuzzy basis function. Thus some parameters of the membership functions characterizing the linguistic terms of the fuzzy control rules can be adjusted by an adaptive law. In our controllers, center values of fuzzy sets are directly adjusted by an adaptive law. Two SAFLC's are designed. One of them uses a Hurwitz error dynamics and the other a switching function of the sliding mode control (SMC). We also prove that 1) their closed-loop systems are globally stable in the sense that all signals involved are bounded and 2) their tracking errors converge to zero asymptotically. We perform computer simulations using a nonlinear plant.

Robust H∞ Fuzzy Control for Discrete-Time Nonlinear Systems with Time-Delay (시간 지연을 갖는 이산 시간 비선형 시스템에 대한 H∞ 퍼지 강인 제어기 설계)

  • Kim Taek Ryong;Park Jin Bae;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.324-329
    • /
    • 2005
  • In this paper, a robust $H\infty$ stabilization problem to a uncertain discrete-time nonlinear systems with time-delay via fuzzy static output feedback is investigated. The Takagj-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear system with time-delayed state. Then, the parallel distributed compensation technique is used for designing of the robust fuzzy controller. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H\infty$ controllers are given in terms of linear matrix inequalities via similarity transform and congruence transform technique. We have shown the effectiveness and feasibility of the proposed method through the simulation.

Event-Triggered Model Predictive Control for Continuous T-S fuzzy Systems with Input Quantization (양자화 입력을 고려한 연속시간 T-S 퍼지 시스템을 위한 이벤트 트리거 모델예측제어)

  • Kwon, Wookyong;Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1364-1372
    • /
    • 2017
  • In this paper, a problem of event-triggered model predictive control is investigated for continuous-time Takagi-Sugeno (T-S) fuzzy systems with input quantization. To efficiently utilize network resources, event-trigger is employed, which transmits limited signals satisfying the condition that the measurement of errors is over the ratio of a certain level. Considering sampling and quantization, continuous Takagi-Sugeno (T-S) fuzzy systems are regarded as a sector bounded continuous-time T-S fuzzy systems with input delay. Then, a model predictive controller (MPC) based on parallel distributed compensation (PDC) is designed to optimally stabilize the closed loop systems. The proposed MPC optimize the objective function over infinite horizon, which can be easily calculated and implemented solving linear matrix inequalities (LMIs) for every event-triggered time. The validity and effectiveness are shown that the event triggered MPC can stabilize well the systems with even smaller average sampling rate and limited actuator signal guaranteeing optimal performances through the numerical example.