• Title/Summary/Keyword: fuzzy Lyapunov

Search Result 247, Processing Time 0.022 seconds

Robust H Disturbance Attenuation Control of Continuous-time Polynomial Fuzzy Systems (연속시간 다항식 퍼지 시스템을 위한 강인한 H 외란 감쇠 제어)

  • Jang, Yong Hoon;Kim, Han Sol;Joo, Young Hoon;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.429-434
    • /
    • 2016
  • This paper introduces a stabilization condition for polynomial fuzzy systems that guarantees $H_{\infty}$ performance under the imperfect premise matching. An $H_{\infty}$ control of polynomial fuzzy systems attenuates the effect of external disturbance. Under the imperfect premise matching, a polynomial fuzzy model and controller do not share the same membership functions. Therefore, a polynomial fuzzy controller has an enhanced design flexibility and inherent robustness to handle parameter uncertainties. In this paper, the stabilization conditions are derived from the polynomial Lyapunov function and numerically solved by the sum-of-squares (SOS) method. A simulation example and comparison of the performance are provided to verify the stability analysis results and demonstrate the effectiveness of the proposed stabilization conditions.

Adaptive Anti-Sway Trajectory Tracking Control of Overhead Crane using Fuzzy Observer and Fuzzy Variable Structure Control (퍼지 관측기와 퍼지 가변구조제어를 이용한 천정주행 크레인의 적응형 흔들림 억제 궤적추종제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.452-461
    • /
    • 2007
  • Adaptive anti-sway and trajectory tracking control of overhead crane is presented, which utilizes Fuzzy Uncertainty Observer(FUO) and Fuzzy based Variable Structure Control(FVSC). We consider an overhead crane system which can be decoupled into the actuated and unactuated subsystems with its own lumped uncertainty such as parameter uncertainties and external disturbance. First, a new method for anti-sway control using FVSC is proposed to improve the conventional method based on Lyapunov direct method, while a conventional trajectory tracking control law using feedback linearization is directly adopted. Second, FUO is designed to estimate one of the two lumped uncertainties which can compensate both of them, based on the fact that two lumped uncertainties are coupled with each other. Then, an adaptive anti-sway control is proposed by incorporating the proposed FVSC and FUO. Under the condition that the observation error is Uniformly Ultimately Bounded(UUB) within an arbitrarily shrinkable region, the overall closed-loop system is shown to be Globally Uniformly Ultimately Bounded(GUUB). In addition, the Global Asymptotic Stability(GAS) of it is shown under the vanishing disturbance assumption. Finally, the effectiveness of the proposed scheme has been confirmed by numerical simulations.

Digital Fuzzy Control of Nonlinear Systems Using Intelligent Digital Redesign

  • Lee, Ho-jae;Kim, Hag-bae;Park, Jin-bae;Cha, Dae-bum;Joo, Young-hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.621-627
    • /
    • 2001
  • In this paper, a novel and efficient global intelligent digital redesign technique for a Takagi-Sugeno (TS) fuzzy system is addressed. The proposed method should be notably discriminated from the previous works in that in allows us to globally match the states of the closed-loop TS fuzzy system with the pre-designed continuous-time fuzzy-model-based controller and those with the digitally redesigned fuzzy-model-based controller, and further to guarantee the stabilizability by the redesigned controller in the sense of Lyapunov. Sufficient conditions for the global state-matching and the stability of the digitally controller system are formulated in terns of linear matrix inequalities (LMIs). The Duffing-like chaotic oscillator is simulated and demonstrated, to validate the effectiveness of the proposed digital redesign technique, which implies the safe applicability to the digital control system.

  • PDF

Novel Fuzzy Disturbance Observer based on Backstepping Method For Nonlinear Systems (비선형 시스템에서의 백스테핑 기법을 이용한 새로운 퍼지 외란 관측기 설계)

  • Baek, Jae-Ho;Lee, Hee-Jin;Park, Mig-Non
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.16-24
    • /
    • 2010
  • This paper is proposed a novel fuzzy disturbance observer based on backstepping method for nonlinear systems with unknown disturbance. Using fuzzy logic systems, a fuzzy disturbance observer with the disturbance observation input is introduced for unknown disturbance. To guarantee that the proposed disturbance observer estimates the unknown disturbance, the disturbance observation error dynamic system is employed. Under the framework of the backstepping design, the fuzzy disturbance observer is constructed recursively and an adaptive laws and the disturbance observation input are derived. Numerical examples are given to demonstrate the validity of our proposed disturbance observer for nonlinear systems.

Robust Adaptive Fuzzy Backstepping Control for Trajectory Tracking of an Electrically Driven Nonholonomic Mobile Robot with Uncertainties (불확실성을 가지는 전기 구동 논홀로노믹 이동 로봇의 궤적 추종을 위한 강인 적응 퍼지 백스테핑 제어)

  • Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.902-911
    • /
    • 2012
  • This paper proposes a robust adaptive fuzzy backstepping control scheme for trajectory tracking of an electrically driven nonholonomic mobile robot with uncertainties and actuator dynamics. A complete model of an electrically driven nonholonomic mobile robot described in this work includes all models of the uncertain robot kinematics with a nonholonomic constraint, the uncertain robot body dynamics with uncertain frictions and unmodeled disturbances, and the uncertain actuator dynamics with disturbances. The proposed control scheme uses the backstepping control approach through a kinematic controller and a robust adaptive fuzzy velocity tracking controller. The presented control scheme has a voltage control input with an auxiliary current control input rather than a torque control input. It has two FBFNs(Fuzzy Basis Function Networks) to approximate two unknown nonlinear robot dynamic functions and a robust adaptive control input with the proposed adaptive laws to overcome the uncertainties such as parameter uncertainties and external disturbances. The proposed control scheme does not a priori require the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. It can also alleviate the chattering of the control input. Using the Lyapunov stability theory, the stability of the closed-loop robot control system is guaranteed. Simulation results show the validity and robustness of the proposed control scheme.

A Study on an Adaptive Robust Fuzzy Controller with GAs for Path Tracking of a Wheeled Mobile Robot

  • Nguyen, Hoang-Giap;Kim, Won-Ho;Shin, Jin-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.12-18
    • /
    • 2010
  • This paper proposes an adaptive robust fuzzy control scheme for path tracking of a wheeled mobile robot with uncertainties. The robot dynamics including the actuator dynamics is considered in this work. The presented controller is composed of a fuzzy basis function network (FBFN) to approximate an unknown nonlinear function of the robot complete dynamics, an adaptive robust input to overcome the uncertainties, and a stabilizing control input. Genetic algorithms are employed to optimize the fuzzy rules of FBFN. The stability and the convergence of the tracking errors are guaranteed using the Lyapunov stability theory. When the controller is designed, the different parameters for two actuator models in the dynamic equation are taken into account. The proposed control scheme does not require the accurate parameter values for the actuator parameters as well as the robot parameters. The validity and robustness of the proposed control scheme are demonstrated through computer simulations.

Variable Speed Control of Wind Turbines Using Robust Fuzzy Algorithm (강인 퍼지 이론을 이용한 풍력 터빈의 가변 속도 제어)

  • Sung, Hwa-Chang;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, we present the robust fuzzy algorithm for variable speed control of wind turbines. Generally, the plants of wind turbines are consisted of complex nonlinearities, and the parameters of variable speed of wind turbines are represented as uncertain terms. For solving these complexity, we propose the robust fuzzy algorithm. At first, the exact fuzzy modeling are performed for variable speed of wind turbines. Next, we design the fuzzy controller for reanalyzed T-S fuzzy model of the wind turbines, then, we prove the stability of the plant through the Lyapunov stability theorem. At last, an example is included for visualizing the efficiency of the proposed technique.

Adaptive Fuzzy Sliding Mode Control for Nonlinear Systems Using Estimation of Bounds for Approximation Errors (근사화 오차 유계 추정을 이용한 비선형 시스템의 적응 퍼지 슬라이딩 모드 제어)

  • Seo Sam-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.527-532
    • /
    • 2005
  • In this paper, we proposed an adaptive fuzzy sliding control for unknown nonlinear systems using estimation of bounds for approximation errors. Unknown nonlinearity of a system is approximated by the fuzzy logic system with a set of IF-THEN rules whose consequence parameters are adjusted on-line according to adaptive algorithms for the purpose of controlling the output of the nonlinear system to track a desired output. Also, using assumption that the approximation errors satisfy certain bounding conditions, we proposed the estimation algorithms of approximation errors by Lyapunov synthesis methods. The overall control system guarantees that the tracking error asymptotically converges to zero and that all signals involved in controller are uniformly bounded. The good performance of the proposed adaptive fuzzy sliding mode controller is verified through computer simulations on an inverted pendulum system.

Fuzzy-Sliding-Sector Control for Chattering Reduction (채터링 감소를 위한 퍼지 슬라이딩 섹터 제어)

  • Han, Jong-Kil;Son, Yong-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.211-216
    • /
    • 2009
  • Chattering phenomenon is still a large drawback of VSS. To overcome this problem, various approaches have been reported. A new notion of sliding sector has been proposed recently. In this paper, fuzzy control with time-varying boundary layer using the sliding sector theory with continued input function in the sector is proposed. This paper analyzes the stability, using Lyapunov function on the sliding sector. Computer simulation for inverted pendulum results in elimination of the chattering phenomenon.

  • PDF

Robust Switching-Type Fuzzy-Model-Based Output Tracker

  • Lee, Ho-Jae;Park, Jin-Bae;Joo, Young-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.411-418
    • /
    • 2005
  • This paper discusses an output-tracking control design method for Takagi-Sugeno fuzzy systems with parametric uncertainties. We first represent the concerned system as a set of uncertain linear systems. The tracking problem is then converted into a stabilization problem thereby leading to a more feasible control design procedure. A sufficient condition for robust practical output tracking is derived in terms of a set of linear matrix inequalities. A numerical example for a flexible-joint robot-arm model has been demonstrated, to convincingly show effectiveness of the proposed system modeling and control design.