• Title/Summary/Keyword: fusarium head blight

Search Result 49, Processing Time 0.031 seconds

Ferulic Acid Content of Barley and Wheat Grains and Head Blight Resistance (맥류 종자의 페룰산(ferulic acid) 함량과 붉은곰팡이 저항성)

  • Baek, Seul Gi;Kim, Sosoo;Jang, Ja Yeong;Kim, Jeomsoon;Lee, Theresa
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.250-255
    • /
    • 2020
  • In order to find if a ferulic acid (FA) can be used as a selection index in cereal breeding for resistance to head blight and mycotoxin production, we analyzed FA in the grains of 80 cultivars of barley, rice, and wheat. FA content ranged 1.66-2.77 mg/g in barley (n=20), 0.56-1.53 mg/g in wheat (n=40), and 0.91-2.13 mg/g in rice (n=20). Among these, 7 cultivars each of barley and wheat with different FA content were tested for head blight and mycotoxin production by 2 Fusarium graminearum and 2 F. asiaticum strains. Mean pathogenicity of the wheat cultivars was significantly less than that of barley with higher FA and among wheat cultivars, there was no correlation between FA content and pathogenicity. Mycotoxin production was also lower in the wheat than in the barley as pathogenicity. However, pathogenicity and toxins produced by F. asiaticum were negatively correlated with FA content in barley. These results indicate that FA is not a resistance factor to head blight by F. asiaticum and F. graminearum or its mycotoxin production in barley and wheat.

Estrogenic Compounds Compatible with a Conditional Gene Expression System for the Phytopathogenic Fungus Fusarium graminearum

  • Lee, Jung-Kwan;Son, Ho-Kyoung;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.349-353
    • /
    • 2011
  • The ascomycete fungus Fusarium graminearum is an important plant pathogen responsible for Fusarium head blight in small grains and ear rot on maize. This fungus also produces the estrogenic metabolite, zearalenone (ZEA) that causes estrogenic disorders in humans and animals. Previously, we developed a conditional gene expression system for this fungus using a ZEA-inducible promoter (Pzear). In the present study, four other estrogenic compounds, including ${\beta}$-estradiol, estriol, estrone, and secoisolariciresinol, were screened as possible substitutes for ZEA in this system. Among them, ${\beta}$-estradiol was able to successfully induce the expression of a gene controlled by Pzear, while estrone was only able to partially induce its expression but the other two compounds were not effective. In combination, these results demonstrate that ${\beta}$-estradiol can replace ZEA in this conditional gene expression system, thereby eliminating the need to use the more expensive reagent, ZEA, and facilitating high-throughput functional analyses of F. graminearum in future studies.

Natural Occurrence of Fusarium Head Blight and Its Mycotoxins in 2010-harvested Barley and Wheat Grains in Korea (2010년산 맥류의 붉은곰팡이병 발생 및 Fusarium 곰팡이독소 자연발생)

  • Ryu, Jae-Gee;Lee, Soo-Hyung;Son, Seung-Wan;Lee, Seung-Ho;Nam, Young-Ju;Kim, Mi-Ja;Lee, Theresa;Yun, Jong-Chul
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.272-279
    • /
    • 2011
  • Fusarium species are worldwide causal agents of Fusarium head blight (FHB) in cereals such as barley and wheat. Their toxigenic potential is a health risk for both humans and animals. To survey the natural occurrence of FHB and mycotoxins produced by Fusarium, total 126 barley or wheat grains grown in 2009-2010 season in Korea were collected. The incidence of FHB was 30.7% in silage barley, 26.9% in wheat, 20.7% in naked barley, 19.4% in malting barley, 16.4% in unhulled barley. Overall FHB incidence of barley and wheat in 2010 was 23.0% and 10% higher than that of 2009. The incidences and level of deoxynivalenol (DON), nivalenol (NIV), and zearalenone (ZEA) were 34%, 0.89 mg/kg, 84.9%, 1.86 mg/kg, and 10.3%, 0.06 mg/kg respectively. The both levels and incidences of NIV were found to be highest in barley, whereas the level of DON was found to be highest in wheat. Incidences of DON and NIV and the level of NIV in the samples from southern regions of Korea were higher than those from central region, whereas the level of DON from central region was higher than that from southern regions. This is the first paper demonstrating regional difference in natural occurrence of DON and NIV in wheat and barley.

Weather Effect and Response of Promoted Rice Varieties on Fusarium Infection in Paddy Field (벼 붉은곰팡이병 감염에 대한 기상조건의 영향과 장려품종의 반응)

  • Lee, Theresa;Jang, Ja Yeong;Kim, Jeomsoon;Ryu, Jae-Gee
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.313-320
    • /
    • 2018
  • Fusarium infection rate of the paddy rice grain after harvest seemed to be influenced by the average temperature from late July (before heading) to the end of September (during ripening). In case of 2010 and 2013 in which average temperature of the same period was similar, Fusarium infection was related to cumulative precipitation, cumulative precipitation days, and precipitation durations over two days. The distribution ratio of Fusarium species complex isolated from paddy rice grains after harvest was 57% in 2010 and 45% in 2013 for Fusarium graminearum species complex (FGSC), 35% and 50% for Fusarium incarnatum-equiseti species complex, and 8% and 5% for Fusarium fujikuroi species complex (FFSC). The distribution ratios of FGSC and FFSC were higher in 2010 than 2013. Among the total 26 promoted rice varieties, the 'Mihyang' showed resistant response against the natural infection with Fusarium species belonging to FGSC and the varieties of 'Nampyeong', 'Hi-ami'and 'Younghojinmi' showed resistant response against the natural infection with overall Fusarium pathogens. Majority of the promoted rice varieties could not be classified for resistance or susceptibility. These results are valuable as basic data to determine the resistance and susceptibility of rice variety against Fusarium spp. infection in the field.

Biological Control of Fusarium Head Blight on Wheat by Polyacetylenes Derived from Cirsium japonicum Roots (대계근에서 분리한 Polyacetylene계 화합물을 이용한 밀 이삭마름병 방제)

  • Kim, Ji-In;Kim, Kihyun;Park, Ae Ran;Choi, Gyung Ja;Park, Hae Woong;Kim, In Seon;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.22 no.3
    • /
    • pp.145-151
    • /
    • 2016
  • Chemical fungicides have reduced Fusarium head blight (FHB) severity. However, by the effects of fungicide residues, they can only be used up to 30 days before time of harvest. Therefore, the development of new biofungicides that are applicable until harvest is required. In order to select plant extracts having antifungal activity against Fusarium graminearum for the control of FHB, we investigated the inhibitory effects of 225 medicinal plant extracts on spore germination of F. graminearum. Of these plant extracts, the methanol extract of Cirsium japonicum (CJ) roots showed the strongest antifungal activity. Through solvent partitioning, repeated column chromatography, and spore germination bioassay, two chemicals were purified and then their chemical structures were identified as ciryneol C (CC) and 1-heptadecene-11,13-diyne-8,9,10-triol (HD-ol) which are polyacetylene substances. Two active compounds effectively inhibited the germination of F. graminearum macroconidia; HD-ol ($IC_{50}$ of $3.17{\mu}g/ml$) showed stronger spore germination inhibitory activity than that of CC ($IC_{50}$ of $28.14{\mu}g/ml$). In addition, the wettable powder type formulation of ethyl acetate extract of CJ roots suppressed the development of FHB in dose-dependent manner, with control values of 78.92% and 31.56% at 250- and 500-fold dilutions, respectively. Combining these findings suggest that the crude extract of CJ roots containing polyacetylene compounds could be used as botanical fungicide for the control of FHB.

Change in the Sensitivity to Propiconazole of Fusarium graminearum Species Complex Causing Head Blight of Barley and Wheat in Jeolla Province (전남북 지역 맥류 붉은곰팡이병균의 Propiconazole 약제에 대한 감수성 변화)

  • Jiseon Baek;Ju-Young Nah;Mi-Jeong Lee;Su-Bin Lim;Jung-Hye Choi;Ja Yeong Jang;Theresa Lee;Hyo-Won Choi;Jeomsoon Kim
    • The Korean Journal of Mycology
    • /
    • v.50 no.4
    • /
    • pp.281-289
    • /
    • 2022
  • Fusarium head blight is an important disease of small grains. It is mainly caused by members of the Fusarium graminearum species complex (FGSC). Barley and wheat growers spray fungicides, especially demethylation-inhibitor fungicides, to suppress the disease. The objective of this study was to examine the changes in the sensitivity of the FGSC population to the triazole fungicide, propiconazole. A total of 124 and 350 isolates of FGSC were obtained from barley and wheat in Jeolla Province during 2010-2016 and 2020-2021, respectively. The species identity and trichothecene chemotypes of the FGSC isolates were determined based on polymerase chain reaction assays targeting translation elongation factor 1-alpha and TRI12 genes, respectively. Sensitivity to propiconazole was determined based on the effective concentration that reduced 50% of the mycelial growth (EC50) using the agar dilution method. Of all isolates, F. asiaticum with the nivalenol chemotype was the most common (83.9% in 2010-2016 and 96.0% in 2020-2021), followed by F. asiaticum with the 3-acetyl deoxynivalenol chemotype (12.1% in 2010-2016 and 2.9% in 2020-2021). The EC50 values of the isolates collected in 2010-2016 and 2020-2021 ranged from 0.0180 to 11.0166 ㎍/mL and 1.3104 to 17.9587 ㎍/mL, respectively. The mean EC50 value of the isolates increased from 3.8648 ㎍/mL in 2010-2016 to 5.9635 ㎍/mL in 2020-2021. The baseline resistance to propiconazole was determined to be 7 ㎍/mL, based on the EC50 value of isolates collected in 2010-2016, and the ratio of resistant isolates increased from 9.7% in 2010-2016 to 28.6% in 2020-2021.

Identification and Chemotype Profiling of Fusarium Species in Korean Oat (국내 귀리의Fusarium속 균의 다양성 및 독소 화학형)

  • Choi, Jung-Hye;Nah, Ju-Young;Jin, Hyun-Suk;Lim, Su-Bin;Paek, Ji-Seon;Lee, Mi-Jeong;Jang, Ja-Yeong;Lee, Theresa;Hong, Sung Kee;Kim, Jeomsoon
    • Research in Plant Disease
    • /
    • v.25 no.4
    • /
    • pp.157-163
    • /
    • 2019
  • This study aimed to assess the incidence and distribution of toxigenic fungi in Korean oat. Toxigenic fungi were isolated from oat samples collected from 12 oat fields from heading to harvest in 2017 and 2018. A total of 745 fungal colonies were isolated based on morphology and identified using marker genes. About 92% of the fungal isolates were Fusarium spp. and others were Penicillium (5.9%) and Aspergillus (2.1%). Fusarium isolates comprised mostly of F. asiaticum (83.1%), followed by F. incarnatum (5.4%), F. proliferatum (3.5%), F. fujikuroi (2.8%), F. tricinctum species complex (FTSC) 11 (1.5%) and F. graminearum (1.0%). About 97% of F. asiaticum was nivalenol type, and 3-acetyl deoxynivalenol (3.2%) and 15-acetyl deoxynivalenol (0.4%) types also were found. Pathogenicity test of the selected Fusarium isolates revealed that F. asiaticum isolates have a wide range of virulence depending on the tested plants. F. graminearum and FTSC 11 isolates from blighted spikelets were the most virulent in naked oat. All Fusarium isolates (n=18) except one (FTSC 11) produced nivalenol (0.2-7.6 ㎍/g), deoxynivalenol (0.03-6.1 ㎍/g), and zearalenone (0.1-27.0 ㎍/g) on rice medium. This study is first report that F. asiaticum causes Fusarium head blight disease of oat in Korea. These findings demonstrate the dominance of F. asiaticum in oat agroecosystems as in rice, wheat and barley in Korea.

Comparative Pathogenicity of Fusarium graminearum Isolates from Wheat Kernels in Korea

  • Shin, Sanghyun;Son, Jae-Han;Park, Jong-Chul;Kim, Kyeong-Hoon;Yoon, Young-mi;Cheong, Young-Keun;Kim, Kyong-Ho;Hyun, Jong-Nae;Park, Chul Soo;Dill-Macky, Ruth;Kang, Chon-Sik
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.347-355
    • /
    • 2018
  • Fusarium head blight (FHB) caused by Fusarium species is a major disease of wheat and barley around the world. FHB causes yield reductions and contamination of grains with trichothecene mycotoxins including; nivalenol (NIV), deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), and 15-acetyldeoxynivalenol (15-ADON). The objectives of this study were to identify strains of F. graminearum isolated in Korea from 2012-harvested wheat grain and to test the pathogenicity of these NIV- and DON-producing isolates. Three hundred and four samples of wheat grain, harvested in 2012 in Chungnam, Chungbuk, Gyeongnam, Jeonbuk, Jeonnam, and Gangwon provinces were collected. We recovered 44 isolates from the 304 samples, based on the PCR amplification of internal transcribed spacer (ITS) rRNA region and sequencing. Our findings indicate that F. asiaticum was the predominant (95% of all isolates) species in Korea. We recovered both F. asiaticum and F. graminearum from samples collected in Chungnam province. Of the 44 isolates recovered, 36 isolates had a NIV genotype while 8 isolates belonged to the DON genotype (3-ADON and 15-ADON). In order to characterize the pathogenicity of the strains collected, disease severity was assessed visually on various greenhouse-grown wheat cultivars inoculated using both NIV- and DON-producing isolates. Our results suggest that Korean F. graminearum isolates from wheat belong to F. asiaticum producing NIV, and both F. graminearum and F. asiaticum are not significantly different on virulence in wheat cultivars.

A Putative Transcription Factor pcs1 Positively Regulates Both Conidiation and Sexual Reproduction in the Cereal Pathogen Fusarium graminearum

  • Jung, Boknam;Park, Jungwook;Son, Hokyoung;Lee, Yin-Won;Seo, Young-Su;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.236-244
    • /
    • 2014
  • The plant pathogen Fusarium graminearum causes Fusarium head blight in cereal crops and produces mycotoxins that are harmful to animals and humans. For the initiation and spread of disease, asexual and sexual reproduction is required. Therefore, studies on fungal reproduction contribute to the development of new methods to control and maintain the fungal population. Screening a previously generated transcription factor mutant collection, we identified one putative $C_2H_2$ zincfinger transcription factor, pcs1, which is required for both sexual and asexual reproduction. Deleting pcs1 in F. graminearum resulted in a dramatic reduction in conidial production and a complete loss of sexual reproduction. The pathways and gene ontology of pcs1-dependent genes from microarray experiments showed that several G-protein related pathways, oxidase activity, ribosome biogenesis, and RNA binding and processing were highly enriched, suggesting that pcs1 is involved in several different biological processes. Further, overexpression of pcs1 increased conidial production and resulted in earlier maturation of ascospores compared to the wild-type strain. Additionally, the vegetative growth of the overexpression mutants was decreased in nutrient-rich conditions but was not different from the wild-type strain in nutrient-poor conditions. Overall, we discovered that the pcs1 transcription factor positively regulates both conidiation and sexual reproduction and confers nutrient condition-dependent vegetative growth.

Insertional mutagenesis of fusarium graminearum for characterization of genes involved in disease development and mycotoxin production

  • Han, Yon-Kyoung;Lee, Hyo-Jin;Yun, Sung-Hwan;Lee, Yin-Won
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.85.2-86
    • /
    • 2003
  • Fusarium graminearum is an important pathogen of cereal crops in many areas of the world causing head blight and ear rot of small grains. In addition to serious economic losses, this fungus produces mycotoxins, such as trichothecenes and zearalenone on diseased crops and has been a potential threat to human and animal health. To massively identify pathogenesis-related genes from F. graminearum, two representative strains (SCKO4 from rice and Z03643 from wheat) were mutagenized using restriction enzyme-mediated integration (REMI). In total, 20,DOD REMI transformants have been collected from the two strains. So far, 63 mutants for several traits involved in disease development such as virulence, mycotoxin production, and sporulation have been selected from 3,000 REMI transformants. Now, selected mutants of interest have being genetically analyzed using a newly developed outcross method (See Jungkwan Lee et al poster). In addition, cloning and characterization of genomic DNA regions flanking the insertional site in the genome of the mutants are in progress.

  • PDF