Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.04.2014.0037

A Putative Transcription Factor pcs1 Positively Regulates Both Conidiation and Sexual Reproduction in the Cereal Pathogen Fusarium graminearum  

Jung, Boknam (Department of Applied Biology, Dong-A University)
Park, Jungwook (Department of Microbiology, Pusan National University)
Son, Hokyoung (Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University)
Lee, Yin-Won (Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University)
Seo, Young-Su (Department of Microbiology, Pusan National University)
Lee, Jungkwan (Department of Applied Biology, Dong-A University)
Publication Information
The Plant Pathology Journal / v.30, no.3, 2014 , pp. 236-244 More about this Journal
Abstract
The plant pathogen Fusarium graminearum causes Fusarium head blight in cereal crops and produces mycotoxins that are harmful to animals and humans. For the initiation and spread of disease, asexual and sexual reproduction is required. Therefore, studies on fungal reproduction contribute to the development of new methods to control and maintain the fungal population. Screening a previously generated transcription factor mutant collection, we identified one putative $C_2H_2$ zincfinger transcription factor, pcs1, which is required for both sexual and asexual reproduction. Deleting pcs1 in F. graminearum resulted in a dramatic reduction in conidial production and a complete loss of sexual reproduction. The pathways and gene ontology of pcs1-dependent genes from microarray experiments showed that several G-protein related pathways, oxidase activity, ribosome biogenesis, and RNA binding and processing were highly enriched, suggesting that pcs1 is involved in several different biological processes. Further, overexpression of pcs1 increased conidial production and resulted in earlier maturation of ascospores compared to the wild-type strain. Additionally, the vegetative growth of the overexpression mutants was decreased in nutrient-rich conditions but was not different from the wild-type strain in nutrient-poor conditions. Overall, we discovered that the pcs1 transcription factor positively regulates both conidiation and sexual reproduction and confers nutrient condition-dependent vegetative growth.
Keywords
Conidiation; Fusarium graminearum; Gibberella zeae; sexual reproduction; transcription factor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hou, Z., Xue, C., Peng, Y., Katan, T., Kistler, H. C. and Xu, J.- R. 2002. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol. Plant- Microbe Interact. 15:1119-1127.   DOI   ScienceOn
2 Lee, J., Kim, H., Jeon, J.-J., Kim, H.-S., Zeller, K. A., Carter, L. L. A., Leslie, J. F. and Lee, Y.-W. 2012. Population structure of and mycotoxin production by Fusarium graminearum from maize in South Korea. Appl. Environ. Microbiol. 78:2161-2167.   DOI
3 Lee, J., Lee, T., Lee, Y.-W., Yun, S.-H. and Turgeon, B. G. 2003. Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Mol. Microbiol. 50:145-152.   DOI   ScienceOn
4 Lee, J., Leslie, J. F. and Bowden, R. L. 2008. Expression and function of sex pheromones and receptors in the homothallic ascomycete Gibberella zeae. Eukaryot. Cell 7:1211-1221.   DOI   ScienceOn
5 Lee, J., Myong, K., Kim, J.-E., Kim, H.-K., Yun, S.-H. and Lee, Y.-W. 2012. FgVelB globally regulates sexual reproduction, mycotoxin production and pathogenicity in the cereal pathogen Fusarium graminearum. Microbiology 158:1723-1733.   DOI   ScienceOn
6 Leslie, J. F. and Summerell, B. A. 2006. The Fusarium laboratory manual. Blackwell Professional, Ames, IA, USA.
7 Lee, J., Park, C., Kim, J.-C., Kim, J. E. and Lee, Y.-W. 2010. Identification and functional characterization of genes involved in the sexual reproduction of the ascomycete fungus Gibberella zeae. Biochem. Biophys. Res. Commun. 401:48-52.   DOI   ScienceOn
8 Lee, S. H., Lee, J., Lee, S., Park, E.-H., Kim, K.-W., Kim, M.- D., Yun, S.-H. and Lee, Y.-W. 2009. GzSNF1 is required for normal sexual and asexual development in the ascomycete Gibberella zeae. Eukaryot. Cell 8:116-127.   DOI   ScienceOn
9 Lee, S., Son, H., Lee, J., Min, G., Choi, K. J., Kim, J.-C. and Lee, Y.-W. 2011. Functional analyses of two acetyl coenzyme A synthetases in the ascomycete Gibberella zeae. Eukaryot. Cell 10:1043-1052.   DOI   ScienceOn
10 Lin, Y., Son, H., Lee, J., Min, K., Choi, G. J., Kim, J.-C. and Lee, Y.-W. 2011. A putative transcription factor MYT1 is required for female fertility in the ascomycete Gibberella zeae. PLoS ONE 6:e25586.   DOI   ScienceOn
11 Min, K., Lee, J., Kim, J.-C., Kim, S. G., Kim, Y. H., Vogel, S., Trail, F. and Lee, Y.-W. 2010. A novel gene, ROA, is required for normal morphogenesis and discharge of ascospores in Gibberella zeae. Eukaryot. Cell 9:1495-1503.   DOI   ScienceOn
12 Ohara, T. and Tsuge, T. 2004. FoSTUA, encoding a basin helixloop- helix protein, differentially regulates development of three kinds of asexual spores, macroconidia, microconidia, and chlamydospores, in the fungal plant pathogen Fusarium oxysporum. Eukaryot. Cell 3:1412-1422.   DOI   ScienceOn
13 Qi, W., Kwon, C. and Trail, F. 2006. Microarray analysis of transcript accumulation during perithecium development in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Mol. Genet. Genomics 276:87-100.   DOI
14 Sambrook, J. and Russell, D. W. 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
15 Yu, J.-H., Hamari, Z., Han, K.-H., Seo, J.-A., Reyes-Dominguez, Y. and Scazzocchio, C. 2004. Double-joint PCR: a PCRbased molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41:973-981.   DOI   ScienceOn
16 Seong, K.-Y., Zhao, X., Xu, J.-R., Guldener, U. and Kostler, H. C. 2008. Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genet. Biol. 45:389-399.   DOI   ScienceOn
17 Son, H., Lee, J., Park, A. R. and Lee, Y.-W. 2011a. ATP citrate lyase is required for normal sexual and asexual development in Gibberella zeae. Fungal Genet. Biol. 48:408-417.   DOI   ScienceOn
18 Son, H., Seo, Y.-S., Min, K., Park, A. R., Lee, J., Jin, J. M., Lin, Y., Cao, P., Hong, S.-Y., Kim, E. K. et al. 2011b. A phenomebased functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathog. 7:e1002310.   DOI   ScienceOn
19 Sutton, J. C. 1982. Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Can. J. Plant Pathol. 4:195-209.   DOI
20 Zeller, K. A., Bowden, R. L. and Leslie, J. F. 2003. Diversity of epidemic populations of Gibberella zeae from small quadrats in Kansas and North Dakota. Phytopathology 93:874-880.   DOI   ScienceOn
21 Zeller, K. A., Bowden, R. L. and Leslie, J. F. 2004. Population differentiation and recombination in wheat scab populations of Gibberella zeae from the United States. Mol. Ecol. 13:563-571.   DOI   ScienceOn
22 Zenczmionka, N. J., Maier, F. J., Losch, A. P. and Schafer, W. 2003. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Curr. Genet. 43:87-95.
23 Han, Y.-K., Kim, M.-D., Lee, S.-H., Yun, S.-H. and Lee, Y.-W. 2007. A novel F-box protein involved in sexual development and pathogenesis in Gibberella zeae. Mol. Microbiol. 63:768-779.
24 Capellini, R. and Peterson, J. 1965. Macroconidium formation in submerged cultures by non-sporulating strains of Gibberella zeae. Mycologia 57:962-966.   DOI
25 Bowden, R. L. and Leslie, J. F. 1999. Sexual recombination in Gibberella zeae. Phytopathology 89:182-188.   DOI   ScienceOn
26 Fernando, W. G. D., Paulitz, T. C., Seaman, W. L., Dutilleul, P. and Miller, J. D. 1997. Head blight gradients caused by Gibberella zeae from area sources of inoculums in wheat field plots. Phytopathology 87:414-421.   DOI   ScienceOn
27 Guenther, J. C. and Trail, F. 2005. The development and differentiation of Gibberella zeae (anamorph: Fusarium graminearum) during colonization of wheat. Mycologia 97:229-237.   DOI   ScienceOn
28 Hallen, H. E., Huebner, M., Shiu, S.-H., Guldener, U. and Trail, F. 2007. Gene expression shifts during perithecium development in Gibberella zeae (anamorph Fusarium graminearum), with particular emphasis on ion transport proteins. Fungal Genet. Biol. 44:1146-1156.   DOI   ScienceOn
29 Harris, S. D. 2005. Morphogenesis in germinating Fusarium graminearum macroconidia. Mycologia 97:880-887.   DOI   ScienceOn
30 Lee, J., Chang, I.-Y., Kim, H., Yun, S.-H., Leslie, J. F. and Lee, Y.-W. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl. Environ. Microbiol. 75:3289-3295.   DOI   ScienceOn
31 Horwitz, B. A., Sharon, A., Lu, S.-W., Ritter, V., Sandrock, T. M., Yoder, O. C. and Turgeon, B. G. 1999. A G protein alpha subunit from Cochliobolus heterostrophus involved in mating and appressorium formation. Fungal Genet. Biol. 26:19-32.   DOI   ScienceOn
32 Yu, H.-Y., Seo, J.-A., Kim, J.-E., Han, K.-H., Shim, W.-B., Yun, S.-H. and Lee, Y.-W. 2008. Functional analyses of heterotrimeric G protein G$\alpha$ and G$\beta$ subunits in Gibberella zeae. Microbiology 154:392-401.   DOI   ScienceOn
33 Hong, S.-Y., So, J., Lee, J., Min, K., Son, H., Park, C., Yun, S.- H. and Lee, Y.-W. 2010. Functional analyses of two syntaxinlike SNARE genes, GzSYN1 and GzSYN2, in the ascomycete Gibberella zeae. Fungal Genet. Biol. 47:364-372.   DOI   ScienceOn