• 제목/요약/키워드: fundamental theorem of calculus

검색결과 12건 처리시간 0.022초

미적분학의 기본정리에 대한 역사-발생적 고찰 (A study on a genetic history of the fundamental theorem of calculus)

  • 한대희
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제9권1호
    • /
    • pp.217-228
    • /
    • 1999
  • The fundamental theorem of calculus is the most 'fundamental' content in teaching calculus. Since the aim of teaching the theorem goes beyond simple application of it, it is difficult to teach it meaningfully. Hence, for the meaningful teaching of the fundamental theorem of calculus, this article seeks to find the educational implication of the fundamental theorem of calculus through reviewing the genetic history of it. A genetic history of the fundamental theorem of calculus can be divided into the following five phases: 1. The deductive discovery of the fundamental theorem of calculus 2. Galileo's Law of falling body and the idea of the fundamental theorem of calculus 3. The discovery of the fundamental theorem of calculus and Barrow's proof 4. Newton's mensuration 5. the development of calculus in 19th century and the fundamental theorem of calculus The developmental phases of the fundamental theorem of calculus discussed above provides the three educational implications. first, we can rediscover this theorem through deductive methods and get the ideas of it in relation to kinetic problems. Second, the developmental phases of the fundamental theorem of calculus shows that the value of this theorem lies in the harmony of its theoretical beauty and practicality. Third, Newton's dynamic image of this theorem can be a typical way of understanding the theorem. We have different aims of teaching the fundamental theorem of calculus, according to which the teaching methods can be adopted. But it is self-evident that the simple application of the theorem is just a part of teaching the fundamental theorem of calculus. Hence we must try to put the educational implications reviewed above into practice.

  • PDF

A FUNDAMENTAL THEOREM OF CALCULUS FOR THE Mα-INTEGRAL

  • Racca, Abraham Perral
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.415-421
    • /
    • 2022
  • This paper presents a fundamental theorem of calculus, an integration by parts formula and a version of equiintegrability convergence theorem for the Mα-integral using the Mα-strong Lusin condition. In the convergence theorem, to be able to relax the condition of being point-wise convergent everywhere to point-wise convergent almost everywhere, the uniform Mα-strong Lusin condition was imposed.

미적분의 기본정리에 대한 고찰 - 속도 그래프 아래의 넓이와 거리의 관계를 중심으로 - (A Study on the Fundamental Theorem of Calculus : Focused on the Relation between the Area Under Time-velocity Graph and Distance)

  • 정연준;이경화
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제19권1호
    • /
    • pp.123-142
    • /
    • 2009
  • 운동학 맥락은 미적분 학습에서 미적분의 형식적인 내용의 직관적인 이해의 원천으로 간주된다. 속도 그래프 아래의 넓이와 이동 거리 관계는 적분 영역에서 다루는 운동학적 맥락의 토대이며, 미적분의 기본정리가 역사적으로 발달한 맥락이다. 본 연구는 속도 그래프 아래의 넓이와 거리 계산 사이의 관계를 통해서 미적분의 기본정리를 조명하고, 이를 통해서 교과서 및 학생들의 이해에서 나타나는 문제점을 분석하였다. 그리고 이상의 논의 결과를 종합하여 미적분의 기본정리에 대한 교육적 시사점을 제안하였다.

  • PDF

미적분학의 기본정리의 교수학적 분석에 기반을 둔 지도방안의 탐색 (An exploration of alternative way of teaching the Fundamental Theorem of Calculus through a didactical analysis)

  • 김성옥;정수영;권오남
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제24권4호
    • /
    • pp.891-907
    • /
    • 2010
  • 미적분학의 기본정리는 미분과 적분을 연결하는 중요한 정리로서 다양한 개념적 요소들을 포함하고 있고 그 가운데 학생들이 이해하기에 쉽지 않은 것들이 있어 교수학적 연구 대상으로 관심을 끌어 왔다. 본 연구에서는 미적분학의 기본정리의 이해의 요소와 인지과정에 바탕을 둔 교수학적 대안을 제시하기 위해 미적분학의 기본정리의 역사적 발달과정과 선행연구를 통하여 미적분학의 기본정리의 이해의 요소를 알아보고, 미적분학의 기본정리의 증명과정에서 누적함수와 변화율 개념을 분석하였다. 이를 바탕으로 미적분학의 기본정리의 지도방법에 대한 교수학적 대안과 교육적 시사점을 제안하였다.

미적분학의 기본정리에 대한 교사의 Folding Back 사고 모형 제안 (Design of Teacher's Folding Back Model for Fundamental Theorem of Calculus)

  • 김부미;박지현
    • 대한수학교육학회지:학교수학
    • /
    • 제13권1호
    • /
    • pp.65-88
    • /
    • 2011
  • 본 연구에서는 먼저 수학사에서 미적분학의 기본정리의 발달 과정을 고찰하고 기하적, 대수적, 형식적 관점에서 그 발생과정을 구분하여 배열한 다음, 이를 바탕으로 학생들이 겪을 수 있는 인식론적 장애와 교과서의 관련 내용을 분석하였다. 그리고 미적분학의 기본정리와 관련된 수학사, 학생들의 오류, 교과서 분석 내용을 바탕으로 미적분학의 기본정리를 학생들에게 의미충실하게 지도할 수 있도록 교사의 'folding back 사고 모형'을 개발하였다([그림 V-1] 참조). 'folding back 사고 모형'은 미적분학의 기본정리와 관련된 수학사, 학생들의 오류, 교과서 분석 내용을 바탕으로 교사가 어떤 교수학적 중재를 활용하는지를 결정하는 단계와 미적분학의 기본정리 개념의 역사발생적 배열 및 학생의 개념 이해 수준을 고려하여 재구성한 '발생적 이해 수준에 따른 개념 모형'([그림 V-2])을 중심으로 제작되었다. 'folding back 사고 모형'의 교수학적 중재 단계에서는 교사가 실제 수업을 설계할 때 활용할 수 있는 자기질문 형식의 'folding back 사고의 적용 요령'(<표 V-1>)을 개발하여 제시하였다. 본 연구에서 제안한 'folding back 사고 모형'은 Pirie-Kieren(1991)의 이론에서 제시된 folding back 개념을 활용하여 교사가 실제로 수학 수업을 설계할 때 수학사와 학생의 오류를 고려할 수 있도록 개발된 사고 모형이다. 이는 수학 교사의 전문성 신장을 이끌고 학생에게는 교과 내용을 배우면서 사고력을 향상 시킬 수 있는 수업을 제공하는데 기여할 수 있을 것이다.

  • PDF

RIEMANN-LIOUVILLE FRACTIONAL FUNDAMENTAL THEOREM OF CALCULUS AND RIEMANN-LIOUVILLE FRACTIONAL POLYA TYPE INTEGRAL INEQUALITY AND ITS EXTENSION TO CHOQUET INTEGRAL SETTING

  • Anastassiou, George A.
    • 대한수학회보
    • /
    • 제56권6호
    • /
    • pp.1423-1433
    • /
    • 2019
  • Here we present the right and left Riemann-Liouville fractional fundamental theorems of fractional calculus without any initial conditions for the first time. Then we establish a Riemann-Liouville fractional Polya type integral inequality with the help of generalised right and left Riemann-Liouville fractional derivatives. The amazing fact here is that we do not need any boundary conditions as the classical Polya integral inequality requires. We extend our Polya inequality to Choquet integral setting.

A STUDY OF THE RIGHT LOCAL GENERAL TRUNCATED M-FRACTIONAL DERIVATIVE

  • Chauhan, Rajendrakumar B.;Chudasama, Meera H.
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.503-520
    • /
    • 2022
  • We introduce a new type of fractional derivative, which we call as the right local general truncated M-fractional derivative for α-differentiable functions that generalizes the fractional derivative type introduced by Anastassiou. This newly defined operator generalizes the standard properties and results of the integer order calculus viz. the Rolle's theorem, the mean value theorem and its extension, inverse property, the fundamental theorem of calculus and the theorem of integration by parts. Then we represent a relation of the newly defined fractional derivative with known fractional derivative and in context with this derivative a physical problem, Kirchoff's voltage law, is generalized. Also, the importance of this newly defined operator with respect to the flexibility in the parametric values is described via the comparison of the solutions in the graphs using MATLAB software.

INTEGRATION OF BICOMPLEX VALUED FUNCTION ALONG HYPERBOLIC CURVE

  • Chinmay Ghosh;Soumen Mondal
    • Korean Journal of Mathematics
    • /
    • 제31권3호
    • /
    • pp.323-337
    • /
    • 2023
  • In this paper, we have defined bicomplex valued functions of bounded variations and rectifiable hyperbolic path. We have studied the integration of product-type bicomplex valued functions on rectifiable hyperbolic path. Also we have established bicomplex analogue of the Fundamental Theorem of Calculus for hyperbolic line integral.

정적분과 응용- 교과서 내용의 균일성\ulcorner (Uniformity in Highschool Mathematics Textbooks in Definite Integral and its applications\ulcorner)

  • 석용징
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제11권2호
    • /
    • pp.307-320
    • /
    • 2001
  • Traditionally, there are many inherent restrictions in highschool mathematics textbooks. They are restricted in its contents and inevitably resorted to reader's ability of intuition. So they are usually lacked logical precisions and have various differences in expressions. We are mainly concerned with the definite integral and its applications in current highschool mathematics II textbooks according to 6th curriculum. We choose 6 of them arbitrarily and survey by comparison to deduce some controversial topics among them as follows. 1) absurd metaphors in formula process 2) confusions in important notations and too much choices in terms and statements. 3) lack of precisions in - teaching hierarchy (between some contents of Physics and the applications of definite integral) - introducing a proof of theorem (fundamental theorem of Calculus I) - introducing the methods (integral substitutions 1, ll) 4) adopting small topics such as - mean value theorem of integral - integrals with variable limits. In coming 7th curriculum, highschool students in Korea are supposed to choose calculus as a whole, independent course. So we hope that the suggested controversial topics are to be referred by authors to improve the preceding Mathematics ll textbooks and for teachers to use them for better mathematics education.

  • PDF

A STUDY ON UNDERSTANDING OF DEFINITE INTEGRAL AND RIEMANN SUM

  • Oh, Hyeyoung
    • Korean Journal of Mathematics
    • /
    • 제27권3호
    • /
    • pp.743-765
    • /
    • 2019
  • Conceptual and procedural knowledge of integration is necessary not only in calculus but also in real analysis, complex analysis, and differential geometry. However, students show not only focused understanding of procedural knowledge but also limited understanding on conceptual knowledge of integration. So they are good at computation but don't recognize link between several concepts. In particular, Riemann sum is helpful in solving applied problem, but students are poor at understanding structure of Riemann sum. In this study, we try to investigate understanding on conceptual and procedural knowledge of integration and to analyze errors. Conducting experimental class of Riemann sum, we investigate the understanding of Riemann sum structure and so present the implications about improvement of integration teaching.