• Title/Summary/Keyword: fundamental equation

Search Result 450, Processing Time 0.026 seconds

SEMILINEAR NONLOCAL DIFFERENTIAL EQUATIONS WITH DELAY TERMS

  • Jeong, Jin-Mun;Cheon, Su Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.627-639
    • /
    • 2013
  • The goal of this paper is to obtain the regularity and the existence of solutions of a retarded semilinear differential equation with nonlocal condition by applying Schauder's fixed point theorem. We construct the fundamental solution, establish the H$\ddot{o}$lder continuity results concerning the fundamental solution of its corresponding retarded linear equation, and prove the uniqueness of solutions of the given equation.

Determination of natural periods of vibration using genetic programming

  • Joshi, Shardul G.;Londhe, Shreenivas N.;Kwatra, Naveen
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.201-216
    • /
    • 2014
  • Many building codes use the empirical equation to determine fundamental period of vibration where in effect of length, width and the stiffness of the building is not explicitly accounted for. Also the equation, estimates the fundamental period of vibration with large safety margin beyond certain height of the building. An attempt is made to arrive at the simple empirical equations for fundamental period of vibration with adequate safety margin, using soft computing technique of Genetic Programming (GP). In the present study, GP models are developed in four categories, varying the number of input parameters in each category. Input parameters are chosen to represent mass, stiffness and geometry of the buildings directly or indirectly. Total numbers of 206 buildings are analyzed out of which, data set of 142 buildings is used to develop these models. It is observed that GP models developed under B and C category yield the same equation for fundamental period of vibration along X direction as well as along Y direction whereas the equation of fundamental period of vibration along X direction and along Y direction is of the same form for category D. The equations obtained as an output of GP models clearly indicate the influence of mass, geometry and stiffness of the building over fundamental period of vibration. These equations are then compared with the equation recommended by other researcher.

Constructing the Purchasing Decision-making Factors to Maximize Customer Value on the Electronic Commerce (고객가치 극대화를 위한 전자상거래 구매의사결정 요인에 관한 연구)

  • Lee Hyun-Kyu;Park Young-Sik
    • The Journal of Information Systems
    • /
    • v.15 no.1
    • /
    • pp.121-144
    • /
    • 2006
  • For constructing the purchasing decision-making model to maximize customer value on the electronic commerce, Means-Ends Network model was used for identifying means and fundamental objectives and their relationships were analyzed by the structural equation. A questionnaire survey of 481 customers in their internet shopping experiences was conducted to extract valid means and fundamental objectives' factors. As a result, 6 means objectives shopping travel, shipping errors, vendor trust, online payment, product choice, and recommender systems and 3 fundamental objectives-shopping convenience, internet ecology, and customer support were founded. Using these 9 factors, structural equation was analyzed 4 times to ensure statistical validities and to establish new interrelationships among them. The results showed that fundamental objectives are affected by the strong relationships within means objectives. This interrelationship with mens and fundamental objectives is interpreted as the purchasing decision-making model to maximize customer value on the electronic commerce in this paper.

  • PDF

A Study on the Analysis of Incompressible and Looped Flow Network Using Topological Constitutive Matrix Equation (위상구성행렬식을 이용한 비압축성 순환망 형태의 유로망 해석에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Bum-Shin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.573-578
    • /
    • 2010
  • Topological matrix which reflects characteristics of network connectivity has been widely used in efficient solving for complicated flow network. Using topological matrix, one can easily define continuity at each node of flow network and make algorithm to automatically generate continuity equation of matrix form. In order to analyze flow network completely it is required to satisfy energy conservation in closed loops of flow network. Fundamental cycle retrieving algorithm based on graph theory automatically constructs energy conservation equation in closed loops. However, it is often accompanied by NP-complete problem. In addition, it always needs fundamental cycle retrieving procedure for every structural change of flow network. This paper proposes alternative mathematical method to analyze flow network without fundamental cycle retrieving algorithm. Consequently, the new mathematical method is expected to reduce solving time and prevent error occurrence by means of simplifying flow network analysis procedure.

HELICOIDAL SURFACES OF THE THIRD FUNDAMENTAL FORM IN MINKOWSKI 3-SPACE

  • CHOI, MIEKYUNG;YOON, DAE WON
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1569-1578
    • /
    • 2015
  • We study helicoidal surfaces with the non-degenerate third fundamental form in Minkowski 3-space. In particular, we mainly focus on the study of helicoidal surfaces with light-like axis in Minkowski 3-space. As a result, we classify helicoidal surfaces satisfying an equation in terms of the position vector field and the Laplace operator with respect to the third fundamental form on the surface.

A Study on Power-Flow Analysis of The Lepelletier 6-Speed Automatic Transmission (6 속 자동변속기용 레펠레티아 유성 치차의 동력 해석에 관한 연구)

  • 박진홍;심재경;강봉수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.652-655
    • /
    • 2004
  • In gear-train design, power-flow analysis is a very important process. The method for power-flow analysis apply the power balance equation and torque balance equation to each fundamental circuit. Then, the equation are solved simultaneously to determine the power-flow in planetary gear train. In this paper we perform power-flow analysis of a 6-speed automatic transmission. With this results are used to represent block diagram. In addition, the efficiencies of epicyclic inversion of the 6-speed automatic transmission is obtained.

  • PDF

Unified calculation model for the longitudinal fundamental frequency of continuous rigid frame bridge

  • Zhou, Yongjun;Zhao, Yu;Liu, Jiang;Jing, Yuan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.343-354
    • /
    • 2021
  • The frequencies formulas of the bridge are of great importance in the design process since these formulas provide insight dynamic characteristics of the structure, which guides the designers to parametric analyses and the layout of the bridge in conceptual or preliminary design. Continuous rigid frame bridge is popular in the mountainous area. Mostly, this type of bridge was simplified either as a girder or cantilever when calculating the frequency, however, studies showed that the different configuration of the bridge made the problem more complex, and there is no unified fundamental calculation pattern for this kind of bridge. In this study, an empirical frequency equation is proposed as a function of pier's height, stiffness of pier and the weight of the structure. A unified fundamental frequency formula is presented based on the energy principle, then the typical continuous rigid frame bridge is investigated by finite element method (FEM) to study the dynamic characteristics of the structure, and then several key parameters are investigated on the effect of structural frequency. These parameters include the number, position and stiffness of the tie beam. Nonlinear regression analyses are conducted with a comprehensive statistical study from plenty of engineering structures. Finally, the proposed frequency equation is validated by field test results. The results show that the fundamental frequency of the continuous rigid frame bridge increases more than 15% when the tie beams are set, and it increases with the stiffness ratio of tie beam to pier. The results also show that the presented unified fundamental frequency has an error of 4.6% compared with the measured results. The investigation can predicate the approximate longitudinal fundamental frequency of continuous ridged frame bridge, which can provide reference for the seismic response and dynamic impact factor design of the pier.

The Effect of Quality Management on Business Performances in Fundamental Manufacturing Industry (국내 뿌리산업에서 품질경영활동이 경영성과에 미친 영향)

  • Koo, Il Seob;Kim, Tae Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.269-278
    • /
    • 2013
  • Recently, fundamental manufacturing industry such as casting foundry, plasticity, welding etc. is rise to concerned. This study is the analysis of using structural equation method in order to verify the significant activation factor of quality management activities and the effect on business performance in fundamental manufacturing industry. To perform this research, we surveyed CEOs, managers, workers working for manufacturing business. We analysed valid 357 questionnaires that we could use for this research using SPSS 15.0 and AMOS 18.0. The results through this research is following. First, we verified the relationship between organizational supports and employee's participation to quality management activity, we could get the result that positive influence on to interrelation. Second, we analysed that organizational supports had a meaningful effect on not process performance but business performance. Third, we found that employee's participation to quality management activity had a significant to business performance, and process performance had a meaningful effect to business performance.

Representation of fundamental solution and vibration of waves in photothermoelastic under MGTE model

  • Rajneesh Kumar;Nidhi Sharma;Supriya Chopra;Anil K. Vashishth
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.123-146
    • /
    • 2023
  • In this paper, Moore-Gibson-Thompson theory of thermoelasticity is considered to investigate the fundamental solution and vibration of plane wave in an isotropic photothermoelastic solid. The governing equations are made dimensionless for further investigation. The dimensionless equations are expressed in terms of elementary functions by assuming time harmonic variation of the field variables (displacement, temperature distribution and carrier density distribution). Fundamental solutions are constructed for the system of equations for steady oscillation. Also some preliminary properties of the solution are explored. In the second part, the vibration of plane waves are examined by expressing the governing equation for two dimensional case. It is found that for the non-trivial solution of the equation yield that there exist three longitudinal waves which advance with the distinct speed, and one transverse wave which is free from thermal and carrier density response. The impact of various models (i)Moore-Gibson-Thomson thermoelastic (MGTE)(2019), (ii) Lord and Shulman's (LS)(1967) , (iii) Green and Naghdi type-II(GN-II)(1993) and (iv) Green and Naghdi type-III(GN-III)(1992) on the attributes of waves i.e., phase velocity, attenuation coefficient, specific loss and penetration depth are elaborated by plotting various figures of physical quantities. Various particular cases of interest are also deduced from the present investigations. The results obtained can be used to delineate various semiconductor elements during the coupled thermal, plasma and elastic wave and also find the application in the material and engineering sciences.

A Boundary Integral Equation Formulation for an Unsteady Anisotropic-Diffusion Convection Equation of Exponentially Variable Coefficients and Compressible Flow

  • Azis, Mohammad Ivan
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.557-581
    • /
    • 2022
  • The anisotropic-diffusion convection equation with exponentially variable coefficients is discussed in this paper. Numerical solutions are found using a combined Laplace transform and boundary element method. The variable coefficients equation is usually used to model problems of functionally graded media. First the variable coefficients equation is transformed to a constant coefficients equation. The constant coefficients equation is then Laplace-transformed so that the time variable vanishes. The Laplace-transformed equation is consequently written as a boundary integral equation which involves a time-free fundamental solution. The boundary integral equation is therefore employed to find numerical solutions using a standard boundary element method. Finally the results obtained are inversely transformed numerically using the Stehfest formula to get solutions in the time variable. The combined Laplace transform and boundary element method are easy to implement and accurate for solving unsteady problems of anisotropic exponentially graded media governed by the diffusion convection equation.