Acknowledgement
Authors are thankful to the reviewers for their valuable suggestions which helped the author's improve the quality of manuscript.
References
- Almond, D.P. and Patel, P.M. (1996), "Photothermal science and techniques", Chapman Hall, London.
- Abbas, I.A. and Abd-alla, A.N. (2008), "Effects of thermal relaxations on thermoelastic interactions in an infinite orthotropic elastic medium with a cylindrical cavity", Arch. Appl. Mech., 78, 283-293. https://doi.org/10.1007/s00419-007-0156-7.
- Abbas, I.A., Abd-alla, A.N., Alzahrani, F. and Spagnuolo, M. (2016), "Wave propagation in a generalized thermoelastic plate using eigenvalue approach", J. Therm. Stresses, 39, 1-11. https://doi.org/10.1080/01495739.2016.1218 229.
- Abbas, I.A. (2015), "Analytical solution for a free vibration of a thermoelastic hollow sphere", Mech. Based Des. Struct. Mach., 43(3), 265-276. https://doi.org/10.1080/15397734.2014.9562 44.
- Abbas, I.A. (2011), "A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation", Sadhana, 36, 411-423. https://doi.org/10.1007/s12046-011-0025-5.
- Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20,1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103.
- Abbas, I.A., Hobiny, A. and Marin, M. (2020), "Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity", J. Taibah Univ. Sci., 14(1), 1369-1376. https://doi.org/10.1080/16583655.2020.1824465.
- Abouelregal, A., Elagan S.K. and Alshehri, N. (2021), "Modified Moore-Gibson-Thompson photo-thermoelastic model for a rotating semiconductor half-space subjected to a magnetic field", Int. J. Modern Phys., https://doi.org/10.1142/s0129183121501631.
- Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys. Am. Inst. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.
- Bazarra, N., Fernandez, J.R. and Quintanilla, R. (2020), "Analysis of a Moore-Gibson-Thompson thermoelastic problem", J. Comput. Appl. Math., 382, 113058. https://doi.org/10.1016/j.cam.2020.113058.
- Cheng, A.H.D. (2016), Poroelasticity, Berlin: Springer.
- Conti, M., Pata, V. and Quintanilla, R. (2020), "Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature", Asymptotic Anal., 120(1-2), 1-21. https://doi.org/10.3233/ASY-191576.
- Conti, M., Pata, V. and Quintanilla, R. (2020a), "On the analyticity of the MGT-viscoelastic plate with heat conduction", J. Differential Equations, 269(10), 7862-7880. https://doi.org/10.1016/j.jde.2020.05.043
- El-Bary, A.A. and Atef, H.M. (2021), "Fundamental solution of generalized magneto-thermo-viscoelasticity with two relaxation times for a perfect conductor cylindrical region", Wave. Random Complex, https://doi.org/10.1080/17455030.2021.1898696.
- Ghanmi, A. and Abbas, I.A. (2019), "An analytical study on the fractional transient heating within the skin tissue during the thermal therapy", J. Therm. Biol., 82, 229-233. https://doi.org/10.1016/j.jtherbio.2019.04.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2, 1-7. https://doi.org/10.1007/BF00045689
- Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proc Roy Soc. Lond. A, 432, 171-194. https://doi.org/10.1098/rspa.1991.0012.
- Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136.
- Green A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31, 189-208. https://doi.org/10.1007/BF00044969.
- Gegelia, T. and Jentsch, L. (1994), "Potential methods in continuum mechanics", Georgian Math. J., 1, 599-640. https://doi.org/10.1515/GMJ.1994.599.
- Hobiny, A. and Abbas, I.A. (2019), "A GN model on photothermal interactions in a two-dimensions semiconductor half space", Results in Physics, 102588. https://doi.org/10.1016/j.rinp.2019.102588.
- Hormander, L. (1963), "Linear partial differential operators", Springer-Verlag, Berlin.
- Hormander, L. (1983), "The analysis of linear partial differential operators II: Differential operators with constant coefficients", Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.
- Jackson, W. and Amer, N.M. (1980), "Piezoelectric photoacoustic detection: Theory and experiment", J. Appl. Phys., 51(6), 3343-3353. https://doi.org/10.1063/1.328045
- Kumar, R., Sharma, N. and Chopra, S. (2022), "Modelling of thermomechanical response in anisotropic photothermoelastic plate", Int. J. Mech. Eng., 6, 577-594.
- Kumar, R., Sharma, N. and Chopra, S. (2022), "Photothermoelastic interactions under Moore-Gibson Thompson thermoelasticity", Coupled Syst. Mech., 11(5), 459-483. https://doi.org/10.12989/csm.2022.11.5.459.
- Kumar, R., Vashishth, A.K. and Ghangas, S. (2020), "Fundamental solution and study of plane waves in bio-thermoelastic medium with DPL", J. Solid Mech., 12(2), 278-296. https://doi.org/10.22034/JSM.2019.582000.1381.
- Kumar R., Ghangas S. and Vashishth A.K. (2021), "Fundamental and plane wave solution in non-local bio-thermoelasticity diffusion theory", Coupled Syst. Mech., 10(1), 21-38. https://doi.org/10.12989/csm.2021.10.1.021.
- Kumar, R. and Batra, D. (2022), "Plane wave and fundamental solution in steady oscillation in swelling porous thermoelastic medium", Wave. Random Complex, https://doi.org/10.1080/17455030.202 2.2091178.
- Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O. and Burchuladze, T.V. (1979), "Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity", North-Holland, Amsterdam, New York, Oxford.
- Kythe, P.K. (1996), "Fundamental solutions for differential operators and applications", Berlin, Birkhauser.
- Lord H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mecha. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Mandelis, A. (1987), "Photoacoustic and thermal wave phenomena in semiconductors", Elsevier Science, North- Holland, New York.
- Mandelis, A. and Michaelian, K.H. (1997), "Photoacoustic and photothermal science and engineering", Opt. Eng., 36(2), 301-302. https://doi.org/10.1117/1.601597
- McDonald, F.A. and Wetsel, G.C. (1978), "Generalized theory of the photoacoustic effect", J. Appl. Phys., 49(4), 2313-2322. https://doi.org/10.1063/1.325116.
- Marin, M., Hobiny, A. and Abbas, I.A. (2021), "The effects of fractional time derivatives in porothermoelastic materials using finite element method", Mathematics, 9, 1606. https://doi.org/10.3390/math9141606.
- Marin, M., Abbas, I.A. and Kumar, R. (2014), "Relaxed Saint-Venant principle for thermoelastic micropolar diffusion", Struct. Eng. Mech., 51(4), 651-662. https://doi.org/10.12989/sem.2014.51.4.651.
- Marin, M., Andreas, O. and Bhatti, M. (2020), "Some results in Moore-Gibson-Thompson thermoelasticity of dipolar bodies", ZAMM - J. Appl. Math. Mech., 100(12), https://doi.org/10.1002/zamm.202000090.
- Nikolic, P.M. and Todorovic, D.M. (1989), "Photoacoustic and electroacoustic properties of semiconductors", Prog. Quantum. Electron., 13(2), 107-189. https://doi.org/10.1016/0079-6727(89)90006-2.
- Nowacki, W. (1962), "Thermoelasticity", Pergamon Press, Oxford.
- Nowacki, W. (1975), "Dynamic problems in thermoelasticity", Noordhoff International Publishing, Leyden.
- Pellicer, M. and Quintanilla, R. (2020), "On uniqueness and instability for some thermomechanical problems involving the Moore-Gibson-Thompson equation", Z. Angew.Math. Phys., 71-84. https://doi.org/10.1007/s00033-020-01307-7.
- Quintanilla, R. (2019), "Moore-Gibson-Thompson thermoelasticity", Math. Mech. Solids, 24(12), 1-12. https://doi.org/10.1177/1081286519862007.
- Quintanilla, R. (2020), "Moore-Gibson-Thompson thermoelasticity with two temperatures", Appl. Eng. Sci., 1, https://doi.org/10.1016/j.apples.2020.100006.
- Roychoudhari, S.K. (2007), "On a thermoelastic three-phase-lag model", J. Therm. Stress, 30(3), 231-238. https://doi.org/10.1080/01495730601130919.
- Stearns, R. and Kino, G. (1985), "Effect of electronic strain on photoacoustic generation in silicon", Appl. Phys. Lett., 47(10), 1048-1050. https://doi.org/10.1063/1.96374.
- Sharma, K. (2010), "Boundary value problems in generalized thermodiffusive elastic medium", J. Solid Mech., 2(4), 348-362.
- Sharma, S. and Sharma, K. (2014), "Influence of heat sources and relaxation time on temperature distribution in tissues", Int. J. Appl. Mech. Eng., 19(2), 427-433. https://doi.org/10.2478/ijame-2014-0029.
- Sharma, N. and Kumar, R. (2021), "Photo-thermoelastic investigation of semiconductor material due to distributed loads", J. Solid Mech., 13(2), 202-212.
- Sharma, N. and Kumar, R. (2022), "Photothermoelastic deformation in dual phase lag model due to concentrated inclined load", Italian J. Pure Appl. Math.
- Sharma, S., Sharma, K. and Bhargava, R.R. (2013a), "Effect of viscosity on wave propagation in anisotropic thermoelastic with Green-Naghdi theory type-II and type-III", Mater. Phys. Mech., 16, 144-158.
- Sharma, S., Sharma, K. and Bhargava, R.R. (2013b), "Wave motion and representation of fundamental solution in electro-microstretch viscoelastic solids", Mater. Phys. Mech., 17, 93-110.
- Sharma, S., Sharma, K. and Bhargava, R.R. (2014), "Plane waves and fundamental solution in an electro-microstretch elastic solids", Afr. Mat., 25, 483-497. https://doi.org/10.1007/s13370-013-0161-7.
- Svanadze Maia, M. (2017), "Fundamental solution and uniqueness theorems in the linear theory of thermoviscoelasticity for solids with double porosity", J. Therm. Stresses, 40(11), 1339-1352. https://doi.org/10.1080/01495739.2017.1351326.
- Thompson, P.A. (1972), "Compressible-fluid dynamics", New York: McGraw-Hill.
- Tzou, D.Y. (1995), "A unified approach for heat conduction from macro-to-micro- scales", J. Heat Transfer., 117(1), 8-16. https://doi.org/10.1115/1.2822329.
- Todorovic, D.(2003a), "Photothermal and electronic elastic effects in micro-electromechanical structures", Rev. Sci. Instrum., 74(1), 578-581. https://doi.org/10.1063/1.1520324.
- Todorovic, D.(2003b), "Plasma, thermal, and elastic waves in semiconductors", Rev. Sci. Instrum., 74(1), 582-585. https://doi.org/10.1063/1.1523133.
- Todorovic, D. (2005), "Plasmaelastic and thermoelastic waves in semiconductors", J. Phys. IV (Proc.) EDP Sci., 125, 551-555. https://doi.org/10.1051/jp4:2005125127.
- Zenkour, A.M. and Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of temperature-dependent hollow cylinders using a finite element model", Int. J. Struct. Stab. Dyn., 14(7), 1450025. https://doi.org/10.1142/s0219455414500254.
- Zheng, P., Cheng, A.H.D. and Li, H. (2017), "Dynamic Green's functions and integral equations for a double-porosity dual-permeability poroelastic material", J. Appl. Mech., 84(6), 061009. https://doi.org/10.1115/1.4036439.