DOI QR코드

DOI QR Code

Representation of fundamental solution and vibration of waves in photothermoelastic under MGTE model

  • Rajneesh Kumar (Department of Mathematics, Kurukshetra University) ;
  • Nidhi Sharma (Department of Mathematics, Maharishi Markandeshwar University Mullana) ;
  • Supriya Chopra (Department of Mathematics, Maharishi Markandeshwar University Mullana) ;
  • Anil K. Vashishth (Department of Mathematics, Kurukshetra University)
  • Received : 2022.10.23
  • Accepted : 2023.04.08
  • Published : 2023.06.25

Abstract

In this paper, Moore-Gibson-Thompson theory of thermoelasticity is considered to investigate the fundamental solution and vibration of plane wave in an isotropic photothermoelastic solid. The governing equations are made dimensionless for further investigation. The dimensionless equations are expressed in terms of elementary functions by assuming time harmonic variation of the field variables (displacement, temperature distribution and carrier density distribution). Fundamental solutions are constructed for the system of equations for steady oscillation. Also some preliminary properties of the solution are explored. In the second part, the vibration of plane waves are examined by expressing the governing equation for two dimensional case. It is found that for the non-trivial solution of the equation yield that there exist three longitudinal waves which advance with the distinct speed, and one transverse wave which is free from thermal and carrier density response. The impact of various models (i)Moore-Gibson-Thomson thermoelastic (MGTE)(2019), (ii) Lord and Shulman's (LS)(1967) , (iii) Green and Naghdi type-II(GN-II)(1993) and (iv) Green and Naghdi type-III(GN-III)(1992) on the attributes of waves i.e., phase velocity, attenuation coefficient, specific loss and penetration depth are elaborated by plotting various figures of physical quantities. Various particular cases of interest are also deduced from the present investigations. The results obtained can be used to delineate various semiconductor elements during the coupled thermal, plasma and elastic wave and also find the application in the material and engineering sciences.

Keywords

Acknowledgement

Authors are thankful to the reviewers for their valuable suggestions which helped the author's improve the quality of manuscript.

References

  1. Almond, D.P. and Patel, P.M. (1996), "Photothermal science and techniques", Chapman Hall, London.
  2. Abbas, I.A. and Abd-alla, A.N. (2008), "Effects of thermal relaxations on thermoelastic interactions in an infinite orthotropic elastic medium with a cylindrical cavity", Arch. Appl. Mech., 78, 283-293. https://doi.org/10.1007/s00419-007-0156-7.
  3. Abbas, I.A., Abd-alla, A.N., Alzahrani, F. and Spagnuolo, M. (2016), "Wave propagation in a generalized thermoelastic plate using eigenvalue approach", J. Therm. Stresses, 39, 1-11. https://doi.org/10.1080/01495739.2016.1218 229.
  4. Abbas, I.A. (2015), "Analytical solution for a free vibration of a thermoelastic hollow sphere", Mech. Based Des. Struct. Mach., 43(3), 265-276. https://doi.org/10.1080/15397734.2014.9562 44.
  5. Abbas, I.A. (2011), "A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation", Sadhana, 36, 411-423. https://doi.org/10.1007/s12046-011-0025-5.
  6. Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20,1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103.
  7. Abbas, I.A., Hobiny, A. and Marin, M. (2020), "Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity", J. Taibah Univ. Sci., 14(1), 1369-1376. https://doi.org/10.1080/16583655.2020.1824465.
  8. Abouelregal, A., Elagan S.K. and Alshehri, N. (2021), "Modified Moore-Gibson-Thompson photo-thermoelastic model for a rotating semiconductor half-space subjected to a magnetic field", Int. J. Modern Phys., https://doi.org/10.1142/s0129183121501631.
  9. Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys. Am. Inst. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.
  10. Bazarra, N., Fernandez, J.R. and Quintanilla, R. (2020), "Analysis of a Moore-Gibson-Thompson thermoelastic problem", J. Comput. Appl. Math., 382, 113058. https://doi.org/10.1016/j.cam.2020.113058.
  11. Cheng, A.H.D. (2016), Poroelasticity, Berlin: Springer.
  12. Conti, M., Pata, V. and Quintanilla, R. (2020), "Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature", Asymptotic Anal., 120(1-2), 1-21. https://doi.org/10.3233/ASY-191576.
  13. Conti, M., Pata, V. and Quintanilla, R. (2020a), "On the analyticity of the MGT-viscoelastic plate with heat conduction", J. Differential Equations, 269(10), 7862-7880. https://doi.org/10.1016/j.jde.2020.05.043
  14. El-Bary, A.A. and Atef, H.M. (2021), "Fundamental solution of generalized magneto-thermo-viscoelasticity with two relaxation times for a perfect conductor cylindrical region", Wave. Random Complex, https://doi.org/10.1080/17455030.2021.1898696.
  15. Ghanmi, A. and Abbas, I.A. (2019), "An analytical study on the fractional transient heating within the skin tissue during the thermal therapy", J. Therm. Biol., 82, 229-233. https://doi.org/10.1016/j.jtherbio.2019.04.
  16. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2, 1-7. https://doi.org/10.1007/BF00045689
  17. Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proc Roy Soc. Lond. A, 432, 171-194. https://doi.org/10.1098/rspa.1991.0012.
  18. Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136.
  19. Green A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31, 189-208. https://doi.org/10.1007/BF00044969.
  20. Gegelia, T. and Jentsch, L. (1994), "Potential methods in continuum mechanics", Georgian Math. J., 1, 599-640. https://doi.org/10.1515/GMJ.1994.599.
  21. Hobiny, A. and Abbas, I.A. (2019), "A GN model on photothermal interactions in a two-dimensions semiconductor half space", Results in Physics, 102588. https://doi.org/10.1016/j.rinp.2019.102588.
  22. Hormander, L. (1963), "Linear partial differential operators", Springer-Verlag, Berlin.
  23. Hormander, L. (1983), "The analysis of linear partial differential operators II: Differential operators with constant coefficients", Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.
  24. Jackson, W. and Amer, N.M. (1980), "Piezoelectric photoacoustic detection: Theory and experiment", J. Appl. Phys., 51(6), 3343-3353. https://doi.org/10.1063/1.328045
  25. Kumar, R., Sharma, N. and Chopra, S. (2022), "Modelling of thermomechanical response in anisotropic photothermoelastic plate", Int. J. Mech. Eng., 6, 577-594.
  26. Kumar, R., Sharma, N. and Chopra, S. (2022), "Photothermoelastic interactions under Moore-Gibson Thompson thermoelasticity", Coupled Syst. Mech., 11(5), 459-483. https://doi.org/10.12989/csm.2022.11.5.459.
  27. Kumar, R., Vashishth, A.K. and Ghangas, S. (2020), "Fundamental solution and study of plane waves in bio-thermoelastic medium with DPL", J. Solid Mech., 12(2), 278-296. https://doi.org/10.22034/JSM.2019.582000.1381.
  28. Kumar R., Ghangas S. and Vashishth A.K. (2021), "Fundamental and plane wave solution in non-local bio-thermoelasticity diffusion theory", Coupled Syst. Mech., 10(1), 21-38. https://doi.org/10.12989/csm.2021.10.1.021.
  29. Kumar, R. and Batra, D. (2022), "Plane wave and fundamental solution in steady oscillation in swelling porous thermoelastic medium", Wave. Random Complex, https://doi.org/10.1080/17455030.202 2.2091178.
  30. Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O. and Burchuladze, T.V. (1979), "Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity", North-Holland, Amsterdam, New York, Oxford.
  31. Kythe, P.K. (1996), "Fundamental solutions for differential operators and applications", Berlin, Birkhauser.
  32. Lord H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mecha. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  33. Mandelis, A. (1987), "Photoacoustic and thermal wave phenomena in semiconductors", Elsevier Science, North- Holland, New York.
  34. Mandelis, A. and Michaelian, K.H. (1997), "Photoacoustic and photothermal science and engineering", Opt. Eng., 36(2), 301-302. https://doi.org/10.1117/1.601597
  35. McDonald, F.A. and Wetsel, G.C. (1978), "Generalized theory of the photoacoustic effect", J. Appl. Phys., 49(4), 2313-2322. https://doi.org/10.1063/1.325116.
  36. Marin, M., Hobiny, A. and Abbas, I.A. (2021), "The effects of fractional time derivatives in porothermoelastic materials using finite element method", Mathematics, 9, 1606. https://doi.org/10.3390/math9141606.
  37. Marin, M., Abbas, I.A. and Kumar, R. (2014), "Relaxed Saint-Venant principle for thermoelastic micropolar diffusion", Struct. Eng. Mech., 51(4), 651-662. https://doi.org/10.12989/sem.2014.51.4.651.
  38. Marin, M., Andreas, O. and Bhatti, M. (2020), "Some results in Moore-Gibson-Thompson thermoelasticity of dipolar bodies", ZAMM - J. Appl. Math. Mech., 100(12), https://doi.org/10.1002/zamm.202000090.
  39. Nikolic, P.M. and Todorovic, D.M. (1989), "Photoacoustic and electroacoustic properties of semiconductors", Prog. Quantum. Electron., 13(2), 107-189. https://doi.org/10.1016/0079-6727(89)90006-2.
  40. Nowacki, W. (1962), "Thermoelasticity", Pergamon Press, Oxford.
  41. Nowacki, W. (1975), "Dynamic problems in thermoelasticity", Noordhoff International Publishing, Leyden.
  42. Pellicer, M. and Quintanilla, R. (2020), "On uniqueness and instability for some thermomechanical problems involving the Moore-Gibson-Thompson equation", Z. Angew.Math. Phys., 71-84. https://doi.org/10.1007/s00033-020-01307-7.
  43. Quintanilla, R. (2019), "Moore-Gibson-Thompson thermoelasticity", Math. Mech. Solids, 24(12), 1-12. https://doi.org/10.1177/1081286519862007.
  44. Quintanilla, R. (2020), "Moore-Gibson-Thompson thermoelasticity with two temperatures", Appl. Eng. Sci., 1, https://doi.org/10.1016/j.apples.2020.100006.
  45. Roychoudhari, S.K. (2007), "On a thermoelastic three-phase-lag model", J. Therm. Stress, 30(3), 231-238. https://doi.org/10.1080/01495730601130919.
  46. Stearns, R. and Kino, G. (1985), "Effect of electronic strain on photoacoustic generation in silicon", Appl. Phys. Lett., 47(10), 1048-1050. https://doi.org/10.1063/1.96374.
  47. Sharma, K. (2010), "Boundary value problems in generalized thermodiffusive elastic medium", J. Solid Mech., 2(4), 348-362.
  48. Sharma, S. and Sharma, K. (2014), "Influence of heat sources and relaxation time on temperature distribution in tissues", Int. J. Appl. Mech. Eng., 19(2), 427-433. https://doi.org/10.2478/ijame-2014-0029.
  49. Sharma, N. and Kumar, R. (2021), "Photo-thermoelastic investigation of semiconductor material due to distributed loads", J. Solid Mech., 13(2), 202-212.
  50. Sharma, N. and Kumar, R. (2022), "Photothermoelastic deformation in dual phase lag model due to concentrated inclined load", Italian J. Pure Appl. Math.
  51. Sharma, S., Sharma, K. and Bhargava, R.R. (2013a), "Effect of viscosity on wave propagation in anisotropic thermoelastic with Green-Naghdi theory type-II and type-III", Mater. Phys. Mech., 16, 144-158.
  52. Sharma, S., Sharma, K. and Bhargava, R.R. (2013b), "Wave motion and representation of fundamental solution in electro-microstretch viscoelastic solids", Mater. Phys. Mech., 17, 93-110.
  53. Sharma, S., Sharma, K. and Bhargava, R.R. (2014), "Plane waves and fundamental solution in an electro-microstretch elastic solids", Afr. Mat., 25, 483-497. https://doi.org/10.1007/s13370-013-0161-7.
  54. Svanadze Maia, M. (2017), "Fundamental solution and uniqueness theorems in the linear theory of thermoviscoelasticity for solids with double porosity", J. Therm. Stresses, 40(11), 1339-1352. https://doi.org/10.1080/01495739.2017.1351326.
  55. Thompson, P.A. (1972), "Compressible-fluid dynamics", New York: McGraw-Hill.
  56. Tzou, D.Y. (1995), "A unified approach for heat conduction from macro-to-micro- scales", J. Heat Transfer., 117(1), 8-16. https://doi.org/10.1115/1.2822329.
  57. Todorovic, D.(2003a), "Photothermal and electronic elastic effects in micro-electromechanical structures", Rev. Sci. Instrum., 74(1), 578-581. https://doi.org/10.1063/1.1520324.
  58. Todorovic, D.(2003b), "Plasma, thermal, and elastic waves in semiconductors", Rev. Sci. Instrum., 74(1), 582-585. https://doi.org/10.1063/1.1523133.
  59. Todorovic, D. (2005), "Plasmaelastic and thermoelastic waves in semiconductors", J. Phys. IV (Proc.) EDP Sci., 125, 551-555. https://doi.org/10.1051/jp4:2005125127.
  60. Zenkour, A.M. and Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of temperature-dependent hollow cylinders using a finite element model", Int. J. Struct. Stab. Dyn., 14(7), 1450025. https://doi.org/10.1142/s0219455414500254.
  61. Zheng, P., Cheng, A.H.D. and Li, H. (2017), "Dynamic Green's functions and integral equations for a double-porosity dual-permeability poroelastic material", J. Appl. Mech., 84(6), 061009. https://doi.org/10.1115/1.4036439.