• Title/Summary/Keyword: functionalized surface

Search Result 249, Processing Time 0.03 seconds

The Effect of Functionalized Organosilane Coupling Agent on the Adhesion Properties of 2 Layer Flexible Copper Clad Laminate (기능성 실란커플링제가 2-FCCL의 접착특성에 미치는 영향)

  • Park, Jin-Young;Lim, Jae-Phil;Kim, Yong-Seok;Jung, Hyun-Min;Lee, Jae-Heung;Ryu, Jong-Ho;Won, Jong-Chan
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.525-529
    • /
    • 2009
  • In order to manufacture 2-layer flexible copper clad laminate (FCCL) s having the excellent performance high adhesion properties between copper foil and polyimide film are required. Silane coupling agents with specific functional groups as an adhesion promoter are generally used to enhance the adhesion. In our study, we synthesized a novel silane coupling agent for increasing the adhesive property between copper layer and polyimide layer. The surface morphology of rolled copper foil, as a function of the concentrations of the coated silane coupling agent, was fully characterized. As fabricated 2-layer FCCL, we observed that adhesive properties were changed by the surface morphology and we confirmed that the novel silane coupling agent affects adhesive properties in FCCL with two types of poly (amic acid)s.

Preparation and Characterization of Poly(phenylene sulfide)-Functionalized MWNTs (폴리(페닐렌 설파이드)로 기능화된 다중벽 탄소나노튜브의 제조와 특성분석)

  • Hong, Sung Yeon;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.791-800
    • /
    • 2014
  • 4-Chlorobenzoyl (CB) group-attached multi-walled carbon nanotube (c-MWNT) was prepared via a direct Friedel-Crafts acylation of MWNT with 4-chlorobenzoic acid (CBA) in a $P_2O_5$/poly(phosphoric acid) medium. c-MWNT with a maximum chlorine content of 5.3 wt% (CB group content of 20.9 wt%) was obtained by controlling the amount of CBA during the reaction. Using a self-condensation polymerization of 4-chlorobenzenethiol (CBT) to poly(phenylene sulfide) (PPS), MWNT-g-PPS was prepared by adding c-MWNT of chlorine content of 5.3 wt% during the self-polymerization of CBT and removing homo PPS after polymerization in order to increase the interfacial interaction between PPS and MWNT. Thermal and surface properties of the MWNT-g-PPS were characterized. The results showed that PPS was formed on the surface of c-MWNT by the condensation of c-MWNT and CBT.

Minor Coat Protein pIII Domain (N1N2) of Bacteriophage CTXф Confers a Novel Surface Plasmon Resonance Biosensor for Rapid Detection of Vibrio cholerae

  • Shin, Hae Ja;Hyeon, Seok Hywan;Cho, Jae Ho;Lim, Woon Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.510-518
    • /
    • 2021
  • Bacteriophages are considered excellent sensing elements for platforms detecting bacteria. However, their lytic cycle has restricted their efficacy. Here, we used the minor coat protein pIII domain (N1N2) of phage CTXφ to construct a novel surface plasmon resonance (SPR) biosensor that could detect Vibrio cholerae. N1N2 harboring the domains required for phage adsorption and entry was obtained from Escherichia coli using recombinant protein expression and purification. SDS-PAGE revealed an approximate size of 30 kDa for N1N2. Dot blot and transmission electron microscopy analyses revealed that the protein bound to the host V. cholerae but not to non-host E. coli K-12 cells. Next, we used amine-coupling to develop a novel recombinant N1N2 (rN1N2)-functionalized SPR biosensor by immobilizing rN1N2 proteins on gold substrates and using SPR to monitor the binding kinetics of the proteins with target bacteria. We observed rapid detection of V. cholerae in the range of approximately 103 to 109 CFU/ml but not of E. coli at any tested concentration, thereby confirming that the biosensor exhibited differential recognition and binding. The results indicate that the novel biosensor can rapidly monitor a target pathogenic microorganism in the environment and is very useful for monitoring food safety and facilitating early disease prevention.

Effect of Interfacial Bonding on Piezoresistivity in Carbon Nanotube and Reduced Graphene Oxide Polymer Nanocomposites (탄소나노튜브 및 환원된 산화그래핀과 고분자간 계면결합력이 나노복합재의 압전 거동에 미치는 영향)

  • Hwang, Sang-Ha;Kim, Hyeon-Ju;Sung, Dae-Han;Jung, Yeong-Tae;Kang, Ku-Hyek;Park, Young-Bin
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.137-144
    • /
    • 2012
  • Chemical functionalization of carbon nanomaterials (CNMs) is generally carried out for increasing interfacial adhesion between filler and polymer matrix for CNM-polymer nanocomposites. The chemically functionalized CNTs can produce strong interfacial bonds with many polymers, allowing CNT based nanocomposites to possess high mechanical and functional properties. Hence, increased surface adhesion can be measured indirectly by observing increased mechanical properties. However, there is a more direct way to observe interfacial bonds between polymer and CNM by measuring piezoresistivity behavior so that we can imagine the behavior of CNM particles in polymer matrix under deflection. Fuctionalization of MWCNT and rGO was carried out by oxidization reaction of MWCNT and rGO with $H_2SO_4/HNO_3$ solution. Electrical resistivities of MWCNT-PMMA and rGO-PMMA composites were decreased after functionalization because of the destructive fuctionalization process. Meanwhile, piezoresistivities of functionalized CNM-PMMA composites showed more sensitive behavior under the same deflection as compared to pristine CNM-PMMA composites. Therefore, mobility of CNM in polymer matrix was found to be improved with chemical functionalization.

Preparation of Metallocene Catalysts Supported on Aminosilane and Ionic Liquids Functionalized Silica and its Ethylene Polymerization (아미노실란과 이온성 액체로 표면 기능화된 실리카에 담지된 메탈로센 촉매 합성 및 에틸렌 중합)

  • Yim, Jin-Heong;Lee, Jeong Suk;Ko, Young Soo
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.169-173
    • /
    • 2015
  • Metallocene was supported on the silica, which was functionalized with aminosilanes such as aminopropyltrimethoxysilane (1NS) or N-[3-(trimethoxysilyl)propyl]ethylenediamine (2NS), and ionic liquids such as 1-butyl-4-methylpyridinium chloride (Cl), tributylmethylammonium chloride (Amm), benzyldimethyltetradecylammonium chloride (Ben), 1-butyl-1-methylpyrrolidinium chloride (Pyr), and then ethylene polymerizations were performed. The Zr contents of $SiO_2/1NS/IL/(n-BuCp)_2ZrCl_2$ and $SiO_2/2NS/IL/(n-BuCp)_2ZrCl_2$ were lower than those of only aminosilane-treated silicas. However, the polymerization activity of $SiO_2/1NS/IL/(n-BuCp)_2ZrCl_2$ was higher than that of $SiO_2/1NS/(n-BuCp)_2ZrCl_2$. The polymerization activity of $SiO_2/2NS/IL/(n-BuCp)_2ZrCl_2$ was lower than that of $SiO_2/2NS/(n-BuCp)_2ZrCl_2$ due to much lower Zr content.

Development of Hyaluronic Acid-Functionalized Hydrogel Lens and Characterization of Physical Properties and Lysozyme Adsorption (Hyaluronic acid의 첨가방법에 따른 하이드로겔 콘택트렌즈의 물리적 특성과 lysozyme 흡착량 비교)

  • Lim, Hwa-lim;Kim, Ho-joong;Jun, Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.285-291
    • /
    • 2015
  • Purpose: The hydrogel lenses have been functionalized with HA(Hyaluronic Acid) using two different methods: construction of an IPN(Interpenetrating Polymer Networks) and formation of CCB(Chemical Covalent Bonding). The lysozyme adsorption and physical properties such as optical transmittance and water content of the hydrogel lenses have been investigated in order to determine whether method is suitable for the application potentials in contact lens industry. Methods: HA have been added to the hydrogel lenses prepared in the Lab using the two different method, e.g. IPN and CCB. The optical transmittance was measured in the wavelength range of 300~800 nm. The water content was measured by the gravimetric method using 0.9% NaCl saline solution. The amounts of adsorbed lysozyme on the contact lenses was analyzed by HPLC after incubation for 12h in artificial tears. Results: The water content of the HA added hydrogel contact lenses was increased, and the lens made by IPN method showed higher water content than the lens made by CCB method. The optical transmittance was over 90% both before and after addition of HA. Comparing the lysozyme adsorption reduction ratio, contact lens manufactured by IPN method was 60.0%, and the lens made by CCB method was 40.4%. Conclusions: CCB method is appropriate to distribute the functional material evenly throughout the lens, whereas IPN method is effective for the case of giving the functionality on the lens surface without phase separation.

Preparation of Positively and Negatively Charged Carbon Nanotube-Collagen Hydrogels with pH Sensitive Characteristic (양전하와 음전하를 띄며 pH 감응성인 카본나노튜브-콜라젠 Hydrogel의 합성)

  • Seo, Jae-Won;Shin, Ueon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.187-193
    • /
    • 2016
  • In this study, preparation of positively and negatively charged carbon nanotube (CNT)-collagen (CG) hydrogels with pH sensitive characteristic was reported. The positive and negative characteristics of the prepared hydrogels were created by introduction of positively functionalized CNT-NH2 and negatively functionalized CNT-COOH, respectively, into the collagen hydrogel. The surface charge of CNTs (CNT-NH2 and CNT-COOH), CG and CNTs/CG hydrogels was measured by Zetasizer. The swelling ratios of CNT-NH2/CG and CNT-COOH/CG hydrogels in aqueous solution were checked by measuring of weight changes of the hydrogels in the range of pH 2~10. In detail, the positively charged CNT-NH2/CG hydrogel swelled up to 5% at pH 4 in comparison to the weight at pH 7, while the negatively charged CNT-COOH/CG hydrogel swelled up to 10% at pH 10. The prepared CNT-NH2/CG and CNT-COOH/CG hydrogels will be very useful as pH sensitive oral drug-delivering systems for gastrointestine (pH ~2) and small intestine (pH ~9), respectively.

Tuning Electrical Performances of Organic Charge Modulated Field-Effect Transistors Using Semiconductor/Dielectric Interfacial Controls (유기반도체와 절연체 계면제어를 통한 유기전하변조 트랜지스터의 전기적 특성 향상 연구)

  • Park, Eunyoung;Oh, Seungtaek;Lee, Hwa Sung
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • Here, the surface characteristics of the dielectric were controlled by introducing the self-assembled monolayers (SAMs) as the intermediate layers on the surface of the AlOx dielectric, and the electrical performances of the organic charge modulated transistor (OCMFET) were significantly improved. The organic intermediate layer was applied to control the surface energy of the AlOx gate dielectric acting as a capacitor plate between the control gate (CG) and the floating gate (FG). By applying the intermediate layers on the gate dielectric surface, and the field-effect mobility (μOCMFET) of the OCMFET devices could be efficiently controlled. We used the four kinds of SAM materials, octadecylphosphonic acid (ODPA), butylphosphonic acid (BPA), (3-bromopropyl)phosphonic acid (BPPA), and (3-aminopropyl)phosphonic acid (APPA), and each μOCMFET was measured at 0.73, 0.41, 0.34, and 0.15 cm2V-1s-1, respectively. The results could be suggested that the characteristics of each organic SAM intermediate layer, such as the length of the alkyl chain and the type of functionalized end-group, can control the electrical performances of OCMFET devices and be supported to find the optimized fabrication conditions, as an efficient sensing platform device.

Pd nanoparticles on poly(amidoamine) dendrimers modified single-walled carbon nanotubes as highly sensitive hydrogen gas sensors

  • Lee, Jun-Min;Lee, Eun-Song-Yi;Jeon, Kye-Jin;Ju, Seong-Hwa;Jung, Yeong-Ri;Kim, Sung-Jin;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.93-93
    • /
    • 2009
  • In order to overcome the lack of reactivity with hydrogen gas ($H_2$) and utilize unique properties of Carbon Nano Tubes (CNTs) for the application to hydrogen sensors, there have been intensive works on the surface functionalization of CNTs with various types of nanoparticles including Pd. In the present work, we have investigated the effect of dendrimers and Pd nanoparticles to the hydrogen sensing properties of CNTs by comparing three types of samples: Pd/SWNTs (Sample I), Pd/dendrimer/SWNTs (Sample II) and heat-treated Pd/dendrimers/SWNTs (Sample III). As a result of IV measurement under the $H_2$ and air, sample I was found to have a high sensitivity (25%) to $H_2$, but to have a very slow response time (324 s) and recovery rate. On the other hand, Sample II was found to show much faster response time (3 s) and good recovery rate but lower sensitivity (8.6%) than Sample I which is due to induced dipole moments in the dendrimers. Interestingly, Sample III showed both fast response time (7 s) and high sensitivity (25%), indicating that the pyrolysis of the dendrimers during heat treatment which reduce the distance between the surface of the SWNTs and the functionalized Pd nanoparticles plays a key role in improving the sensitivity. The pyrolysis of the dendrimers in Pd nanoparticle-dendrimer-SWNTs was found to enable a significant electrical conductance modulation upon exposure to extremely low concentrations (10 ppm) of $H_2$ in air. Our results demonstrate that the Pd Nanoparticle-Grafted Single-Walled Carbon Nanotubes(SWNTs) with Dendrimers can be used to detect hydrogen, makingoutstanding properties such as fast response, and recovery time, high sensitivity, low detection limit at room temperature compared with other types of hydrogen sensors.

  • PDF

A Study on the Immobilization of Biomolecules on Poly(acrylic acid)-grafted MWCNTs Prepared by Radiation-Induced Graft Polymerization (방사선 그래프트 중합에 의하여 제조된 폴리(아크릴 산)이 그래프트된 탄소나노튜브에 생체분자 고정화에 관한 연구)

  • Jung, Chan-Hee;Lee, Byoung-Min;Hwang, In-Tae;Choi, Jae-Hak;Nho, Young-Chang;Hong, Sung-Kwon
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.150-153
    • /
    • 2010
  • In this research, biomolecule-immobilized multi-walled carbon nanotubes (MWCNTs) were prepared by using radiation-induced graft polymerization. For the immobilization of biomolecules, the surface of MWNCTs was functionalized by radiation-induced graft polymerization of acrylic acid. Based on the results of TGA and Raman spectroscopy it was found that acrylic acid was effectively graft-polymerized on the MWCNTs. Biomolecules such as DNA and proteins were immobilized onto the resultant poly(acrylic acid)-grafted MWCNTs. The results of the X-ray photoelectron spectroscopy and fluorescence microscopy confirmed that the biomoelcules were successfully immobilized on the poly(acrylic acid)-grafted MWCNTs.