Browse > Article
http://dx.doi.org/10.17702/jai.2022.23.2.53

Tuning Electrical Performances of Organic Charge Modulated Field-Effect Transistors Using Semiconductor/Dielectric Interfacial Controls  

Park, Eunyoung (Department of Materials Science and Chemical Engineering, Hanyang University)
Oh, Seungtaek (Department of Materials Science and Chemical Engineering, Hanyang University)
Lee, Hwa Sung (Department of Materials Science and Chemical Engineering, Hanyang University)
Publication Information
Journal of Adhesion and Interface / v.23, no.2, 2022 , pp. 53-58 More about this Journal
Abstract
Here, the surface characteristics of the dielectric were controlled by introducing the self-assembled monolayers (SAMs) as the intermediate layers on the surface of the AlOx dielectric, and the electrical performances of the organic charge modulated transistor (OCMFET) were significantly improved. The organic intermediate layer was applied to control the surface energy of the AlOx gate dielectric acting as a capacitor plate between the control gate (CG) and the floating gate (FG). By applying the intermediate layers on the gate dielectric surface, and the field-effect mobility (μOCMFET) of the OCMFET devices could be efficiently controlled. We used the four kinds of SAM materials, octadecylphosphonic acid (ODPA), butylphosphonic acid (BPA), (3-bromopropyl)phosphonic acid (BPPA), and (3-aminopropyl)phosphonic acid (APPA), and each μOCMFET was measured at 0.73, 0.41, 0.34, and 0.15 cm2V-1s-1, respectively. The results could be suggested that the characteristics of each organic SAM intermediate layer, such as the length of the alkyl chain and the type of functionalized end-group, can control the electrical performances of OCMFET devices and be supported to find the optimized fabrication conditions, as an efficient sensing platform device.
Keywords
Organic charge modulated transistor; Self-assembled monolayer; Interfacial control; electrical performance; Surface energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Chu, H. Li, J. Huang, and H. E. Katz, Adv. Mater. Technol., 4, 1900410, (2019).   DOI
2 O. Knopfmacher, M. L. Hammock, A. L. Appleton, G. Schwartz, J. Mei, T. Lei, J. Pei, and Z. Bao, Nat. Commun., 5, 2954, (2014).   DOI
3 G. Choi, K. Lee, S. Oh, J. Seo, E. Park, Y. D. Park, J. Lee, and H. S. Lee, J. Mater. Chem. C, 9, 8179, (2021).   DOI
4 M. Demelasa, S. Laia, A. Spanuac, S. Martinoiac, P. Cossedduab, M. Barbaroa, and A. Bonfiglio, J. Mater. Chem. B, 1, 3811-3819, (2013).   DOI
5 A. Spanu, F. Viola, S. Lai, P. Cosseddu, P. C. Ricci and, A. Bonfiglio, Org. Electron., 48, 188-193, (2017).   DOI
6 A. Kozbial, Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B. D'Urso, H. Liu, and L. Li, Langmuir, 30, 8598-8606, (2014).   DOI
7 S. Jang, D. Son, S. Hwang, M. Kang, S. K. Lee, D. Y. Jeon, S. Bae, S. H. Lee, D. S. Lee, and T. W. Kim, Nano Converg., 5, 20, (2018).   DOI
8 C. Klinke, A. Afzali, and P. Avouris, Chem. Phys. Lett., 430, 75-79, (2006).   DOI
9 J. S. Park, A. N. Vo, D. Barriet, Y. S. Shon, and T. R. Lee, Langmuir, 21, 2902-2911, (2005).   DOI
10 S. H. Kim, J. Lee, N. Park, H. Min, H. W. Park, D. H. Kim, and S. H., Lee, J. Phys. Chem. C, 119, 28819-28827, (2015).   DOI
11 P. Xuan, J. Tengyu, G. Jing, H. Cheng, S. Yumeng, and C. Wei, Small, 16, 2001504, (2020).   DOI
12 S. Oh, G. Choi, J. Seo, S Li, T. Hwang, E. Park, and H. S. Lee, ACS Appl. Mater. Interfaces, 13, 56385-56393, (2021).   DOI
13 S. Barbar, Z. Martin, and M. Irimia-Vladu, Chem. Soc. Rev., 48, 1787-1825, (2019).   DOI
14 H. Li, W. Shi, J. Song, H. J. Jang, J. Dailey, J. Yu, and H. E. Katz, Chem. Rev., 119, (2019).
15 P. Friederich, A. Fediai, S. Kaiser, M. Konrad, N. Jung, and W. Wenzel, Adv.Mater., 31, 1808256 (2019).   DOI
16 T. W. Keller, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, A. M. Haase, E. D. Vogel, and D. S Theiss, Chem. Mater. 16, 23, 4413-4422, (2004).   DOI
17 S. Riera-Galindo, F. Leonardi, and R. M. Pfattner, Adv. Mater. Technol., 4, 1900104, (2019).   DOI
18 Y. Jie, Z. Zhiyuan, W, Shuai, G. Yunlong, and L. Yunqi, Chem., 4 (12), 2748-2785, (2018).   DOI
19 H. Zhu, E. S. Shin, A. Liu, D. Ji, Y. Xu, and Y. Y. Noh, Adv. Funct. Mater., 30, 1904588, (2020).   DOI
20 M. R. R Khan, S. Oh, G. Choi, and H. S. Lee, Sens. Actuators B Chem., 309, 127783, (2020).   DOI
21 S. Lai, M. Demelas,G. Casula, P. Cosseddu, M. Barbaro, and A. Bonfiglio, Adv.Mater., 25, 103-107, (2013).   DOI
22 H. Sirringhaus, Adv.Mater. 26, 1319-1335 (2014).   DOI
23 S. Steudel, K. Myny, V. Arkhipov, C. Deibel, S. D. Vusser, J. Genoe, and P. Heremans, Nat. Mater., 4, 597 (2005).   DOI
24 X. Ren, F. Yang, X. Gao, S. Cheng, X. Zhang, H. Dong, and W. Hu, Adv. Energy Mater., 8, 1801003, (2018).   DOI
25 H. Shen, Y. Zou, Y. Zang, D. Huang, W. Jin, C. A. Di, and D. Zhu, Mater. Horiz., 5, 240-247, (2018).   DOI
26 X. Wu, S. Mao, J. Chen, and J. Huang, Adv. Mater., 30, 1705642, (2018).   DOI
27 T. Yamamoto, K. Takimiya, and J. Am. Chem. Soc., 129, 2224-2225, (2007).   DOI
28 S. Lai, M. Barbaro, and A. Bonfiglio, Sens. Actuators B Chem., 233, 314-319, (2016).   DOI
29 A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. Wang, and R. G. Gordon, Nano Lett., 4, 447-450, (2004).   DOI
30 Y. Wu, Z. Wang, L. Yang, Y. Qiao, D. Chang, Y. Yan, Z. Wu, Z. Hu, J. Zhang, X. Lu, Y. Zhao, and Y. Liu, ACS Appl. Mater. Interfaces, 14, 3095, (2022).   DOI