Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.6.791

Preparation and Characterization of Poly(phenylene sulfide)-Functionalized MWNTs  

Hong, Sung Yeon (Department of Organic Materials and Fiber Engineering, Soongsil University)
Kim, Young Ho (Department of Organic Materials and Fiber Engineering, Soongsil University)
Publication Information
Polymer(Korea) / v.38, no.6, 2014 , pp. 791-800 More about this Journal
Abstract
4-Chlorobenzoyl (CB) group-attached multi-walled carbon nanotube (c-MWNT) was prepared via a direct Friedel-Crafts acylation of MWNT with 4-chlorobenzoic acid (CBA) in a $P_2O_5$/poly(phosphoric acid) medium. c-MWNT with a maximum chlorine content of 5.3 wt% (CB group content of 20.9 wt%) was obtained by controlling the amount of CBA during the reaction. Using a self-condensation polymerization of 4-chlorobenzenethiol (CBT) to poly(phenylene sulfide) (PPS), MWNT-g-PPS was prepared by adding c-MWNT of chlorine content of 5.3 wt% during the self-polymerization of CBT and removing homo PPS after polymerization in order to increase the interfacial interaction between PPS and MWNT. Thermal and surface properties of the MWNT-g-PPS were characterized. The results showed that PPS was formed on the surface of c-MWNT by the condensation of c-MWNT and CBT.
Keywords
multi-walled carbon nanotube (MWNT); Friedel-Crafts acylation; poly(phenylene sulfide) (PPS); 4-chlorobenzoic acid (CBA); 4-chlorobenzenethiol (CBT); self-condensation polymerization;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 S. H. Choi, Y. J. Jeong, G. W. Lee, and D. H. Cho, Fib. Polym., 10, 513 (2009).   DOI
2 K. Sasikumar, N. R. Manoj, T. Mukundan, and D. Khastgir, J. Appl. Polym. Sci., 131, 40752 (2014).
3 Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Prog. Polym. Sci., 35, 357 (2010).   DOI   ScienceOn
4 G. Zhang, S. Sun, D. Yang, J. P. Dodelet, and E. Sacher, Carbon, 46, 196 (2008).   DOI   ScienceOn
5 G. Jun, C. W. Nah, M. K. Seo, J. H. Byun, K. H. Lee, and S. J. Park, Polymer(Korea), 36, 612 (2012).
6 R. B. Seymour and G. S. Kirshenbaum, High Performance Polymers: Their Origin and Development, Elsevier Sci. Publ. Co., New York, USA, 1986.
7 D. Ragupathy, J. J. Park, S. C. Lee, J. C. Kim, P. Gomathi, M. K. Kim, S. M. Lee, H. D. Ghim, A. Rajendran, S. H. Lee, and K. M. Jeon, Macromol. Res., 19, 764 (2011).   DOI
8 A. Noll, K. Friedrich, T. Burkhart, and U. Breuer, Polym. Compos., 34, 1405 (2013).   DOI
9 H. T Oyama, M. Matsushita, and M. Furuta, Polym. J., 43, 991 (2011).   DOI
10 J. X. Wan, Y. F. Qin, S. B. Li, and X. H. Wang, Adv. Mater. Res., 332, 1045 (2011).
11 A. P. Gies, J. F. Geibel, and D. M. Hercules, Macromolecules, 43, 943 (2010).   DOI
12 Y. Ding and A. S. Hay, Macromolecules, 30, 5612 (1997).   DOI
13 I. Y. Jeon, H. J. Lee, Y. S. Choi, L. S. Tan, and J. B. Baek, Macromolecules, 41, 7423 (2008).   DOI
14 G. J. Shugar and J. T. Ballinger, Chemical Technicians's Ready Reference Handbook, McGraw-Hill Inc., 1990.
15 D. H. Lim, C. B. Lyons, L. S. Tan, and J. B. Beak, J. Phys. Chem. C, 112, 12188 (2008).   DOI
16 J. B. Baek, C. B. Lyons, and L. S. Tan, Macromolecules, 37, 8278 (2004).   DOI   ScienceOn
17 H. J. Lee, S. W. Han, Y. D. Kwon, L. S. Tan, and J. B. Baek, Carbon, 46, 1850 (2008).   DOI
18 Y. S. Shim, B. G. Min, and S. J. Park, Macromol. Res., 20, 540 (2012).   DOI   ScienceOn
19 J. E. Mark, Polymer Data Handbook, Oxford University Press, New York, 2009.
20 Y. S. Park, G. H. Kim, S. C. Lee, S. G. Han, and Y. H. Cha, Polymer(Korea), 16, 687 (1992).
21 V. Parthasarathy, B. Sundaresan, V. Dhanalakshmi, and R. Anbarasan, Polym. Eng. Sci., 50, 474 (2009).
22 J. S. Ling, G. X. Yu, and Z. Z. Yuan, J. Appl. Polym. Sci., 127, 224 (2013).   DOI
23 D. J. Chung, K. C. Kim, and S. H. Choi, Polymer(Korea), 36, 470 (2012).
24 J. C. Zhao, F. P. Du, X. P. Zhou, W. Cui, X. M. Wang, H. Zhu, X. L. Xie, and Y. W. Mai, Composites Part B, 42, 2111 (2011).   DOI
25 G. Freihofer, F. Liang, B. Mohan, J. Gou, and S. Raghavan, Int. J. Smart Nano Mater., 3, 309 (2012).   DOI