• 제목/요약/키워드: functional transform

검색결과 265건 처리시간 0.033초

GENERALIZED FOURIER-FEYNMAN TRANSFORM AND SEQUENTIAL TRANSFORMS ON FUNCTION SPACE

  • Choi, Jae-Gil;Chang, Seung-Jun
    • 대한수학회지
    • /
    • 제49권5호
    • /
    • pp.1065-1082
    • /
    • 2012
  • In this paper we first investigate the existence of the generalized Fourier-Feynman transform of the functional F given by $$F(x)={\hat{\nu}}((e_1,x)^{\sim},{\ldots},(e_n,x)^{\sim})$$, where $(e,x)^{\sim}$ denotes the Paley-Wiener-Zygmund stochastic integral with $x$ in a very general function space $C_{a,b}[0,T]$ and $\hat{\nu}$ is the Fourier transform of complex measure ${\nu}$ on $B({\mathbb{R}}^n)$ with finite total variation. We then define two sequential transforms. Finally, we establish that the one is to identify the generalized Fourier-Feynman transform and the another transform acts like an inverse generalized Fourier-Feynman transform.

MULTIPLE Lp ANALYTIC GENERALIZED FOURIER-FEYNMAN TRANSFORM ON THE BANACH ALGEBRA

  • Chang, Seung-Jun;Choi, Jae-Gil
    • 대한수학회논문집
    • /
    • 제19권1호
    • /
    • pp.93-111
    • /
    • 2004
  • In this paper, we use a generalized Brownian motion process to define a generalized Feynman integral and a generalized Fourier-Feynman transform. We also define the concepts of the multiple Lp analytic generalized Fourier-Feynman transform and the generalized convolution product of functional on function space $C_{a,\;b}[0,\;T]$. We then verify the existence of the multiple $L_{p}$ analytic generalized Fourier-Feynman transform for functional on function space that belong to a Banach algebra $S({L_{a,\;b}}^{2}[0, T])$. Finally we establish some relationships between the multiple $L_{p}$ analytic generalized Fourier-Feynman transform and the generalized convolution product for functionals in $S({L_{a,\;b}}^{2}[0, T])$.

GENERALIZED PSEUDO-DIFFERENTIAL OPERATORS INVOLVING FRACTIONAL FOURIER TRANSFORM

  • Waphare, B.B.;Pansare, P.D.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권1호
    • /
    • pp.105-115
    • /
    • 2021
  • Generalized pseudo-differential operators (PDO) involving fractional Fourier transform associate with the symbol a(x, y) whose derivatives satisfy certain growth condition is defined. The product of two generalized pseudo-differential operators is shown to be a generalized pseudo-differential operator.

FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION OF FOURIER-TYPE FUNCTIONALS ON WIENER SPACE

  • Kim, Byoung Soo
    • East Asian mathematical journal
    • /
    • 제29권5호
    • /
    • pp.467-479
    • /
    • 2013
  • We develop a Fourier-Feynman theory for Fourier-type functionals ${\Delta}^kF$ and $\widehat{{\Delta}^kF}$ on Wiener space. We show that Fourier-Feynman transform and convolution of Fourier-type functionals exist. We also show that the Fourier-Feynman transform of the convolution product of Fourier-type functionals is a product of Fourier-Feynman transforms of each functionals.

Dictionary Attack on Functional Transform-Based Cancelable Fingerprint Templates

  • Shin, Sang-Wook;Lee, Mun-Kyu;Moon, Dae-Sung;Moon, Ki-Young
    • ETRI Journal
    • /
    • 제31권5호
    • /
    • pp.628-630
    • /
    • 2009
  • Recently, Ratha and others proposed a cancelable biometrics scheme which transforms an original fingerprint template into a new one using a noninvertible transformation. However, we show that the original template is recovered by a dictionary attack if two transformed templates originating from it are revealed. In our attack, we simulate the transformation and construct a set of possible pre-images for each transformed template. Then, we find the correct pre-image by computing the intersection of these sets. We present an algorithm implementing this idea as well as successful experimental results.

A REPRESENTATION FOR AN INVERSE GENERALIZED FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PROCESS ON FUNCTION SPACE

  • Choi, Jae Gil
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제28권4호
    • /
    • pp.281-296
    • /
    • 2021
  • In this paper, we suggest a representation for an inverse transform of the generalized Fourier-Feynman transform on the function space Ca,b[0, T]. The function space Ca,b[0, T] is induced by the generalized Brownian motion process with mean function a(t) and variance function b(t). To do this, we study the generalized Fourier-Feynman transform associated with the Gaussian process Ƶk of exponential-type functionals. We then establish that a composition of the Ƶk-generalized Fourier-Feynman transforms acts like an inverse generalized Fourier-Feynman transform.

ANALYTIC FOURIER-FEYNMAN TRANSFORMS ON ABSTRACT WIENER SPACE

  • Ahn, Jae Moon;Lee, Kang Lae
    • Korean Journal of Mathematics
    • /
    • 제6권1호
    • /
    • pp.47-66
    • /
    • 1998
  • In this paper, we introduce an $L_p$ analytic Fourier-Feynman transformation, show the existence of the $L_p$ analytic Fourier-Feynman transforms for a certain class of cylinder functionals on an abstract Wiener space, and investigate its interesting properties. Moreover, we define a convolution product for two functionals on the abstract Wiener space and establish the relationships between the Fourier-Feynman transform for the convolution product of two cylinder functionals and the Fourier-Feynman transform for each functional.

  • PDF