GENERALIZED PSEUDO-DIFFERENTIAL OPERATORS INVOLVING FRACTIONAL FOURIER TRANSFORM

B. B. Waphare ${ }^{1}$ and P. D. Pansare ${ }^{2}$
${ }^{1}$ MIT Arts, Commerce and Science College, Alandi (D), Pune, India e-mail: balasahebwaphare@gmail.com
${ }^{2}$ Research Scholar, Savitribai Phule Pune University, Pune, India e-mail: pradippansare@gmail.com

Abstract

Generalized pseudo-differential operators (PDO) involving fractional Fourier transform associate with the symbol $a(x, y)$ whose derivatives satisfy certain growth condition is defined. The product of two generalized pseudo-differential operators is shown to be a generalized pseudo-differential operator.

1. Introduction

If $\phi \in L_{1}(\mathbb{R})$ then the Fourier transform of a function is defined by

$$
\begin{equation*}
\widetilde{\phi}(y)=(\mathcal{F}(\phi))(y)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i x y} \phi(x) d x, y \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

and if $\widetilde{\phi} \in L_{1}(\mathbb{R})$ then the inverse Fourier transform is given by

$$
\begin{equation*}
\phi(x)=\left(\mathcal{F}^{-1}(\widetilde{\phi})\right)(x)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{i x y} \widetilde{\phi}(y) d y, x \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

The one dimensional fractional Fourier transform ([5], [6]) with parameters α, β of $\phi(x)$ denoted by $\left(\mathcal{F}_{\alpha, \beta}(\phi)\right)(t)=\widehat{\phi}_{\alpha, \beta}(t)$ is given by

$$
\begin{equation*}
\left(\mathcal{F}_{\alpha, \beta}(\phi)\right)(t)=\widehat{\phi}_{\alpha, \beta}(t)=\int_{\mathbb{R}} K_{\alpha, \beta}(x, t) \phi(x) d x \tag{1.3}
\end{equation*}
$$

[^0]where $K_{\alpha, \beta}(x, t)= \begin{cases}C_{\alpha, \beta} e^{i\left(x^{2}+t^{2}\right) \cot (\alpha-\beta)^{(\alpha+\beta)}-i x t \csc (\alpha-\beta)} & \text { if } \quad(\alpha-\beta) \neq n \pi, \\ \frac{1}{(2 \pi)^{\alpha+\beta}} e^{-i x t} & \text { if } \quad(\alpha-\beta)=\frac{\pi}{2},\end{cases}$ for n is an integer and

$$
C_{\alpha, \beta}=(2 \pi i \sin (\alpha-\beta))^{-(\alpha+\beta)} e^{i(\alpha-\beta)^{(\alpha+\beta)}}=\left(\frac{1-i \cot (\alpha-\beta)}{2 \pi}\right)^{\alpha+\beta}
$$

It is inverted by

$$
\begin{equation*}
\phi(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} \overline{K_{\alpha, \beta}(x, t)}\left(\mathcal{F}_{\alpha, \beta}(\phi)\right)(t) d t, \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{K_{\alpha, \beta}(x, t)}=C_{\alpha, \beta}^{\prime} e^{-i\left(x^{2}+t^{2}\right) \cot (\alpha-\beta)^{(\alpha+\beta)}}+i x t \csc (\alpha-\beta) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{aligned}
C_{\alpha, \beta}^{\prime} & =\frac{(2 \pi i \sin (\alpha-\beta))^{\alpha+\beta}}{\sin (\alpha-\beta)} e^{-i(\alpha-\beta)^{(\alpha+\beta)}} \\
& =\frac{(2 \pi i)^{\alpha+\beta}(\sin (\alpha-\beta))^{\alpha+\beta}}{\sin (\alpha-\beta)}(\cos (\alpha-\beta)-i \sin (\alpha-\beta))^{(\alpha+\beta)} \\
& =\frac{(2 \pi i)^{\alpha+\beta}(\sin (\alpha-\beta))^{2(\alpha+\beta)}}{\sin (\alpha-\beta)(\sin (\alpha-\beta))^{\alpha+\beta}}(\cos (\alpha-\beta)-i \sin (\alpha-\beta))^{(\alpha+\beta)} \\
& =\frac{(2 \pi i)^{\alpha+\beta}(\sin (\alpha-\beta))^{2(\alpha+\beta)}}{\sin (\alpha-\beta)}(\cot (\alpha-\beta)-i)^{\alpha+\beta} \\
& =\frac{(2 \pi)^{\alpha+\beta}(\sin (\alpha-\beta))^{2(\alpha+\beta)}}{\sin (\alpha-\beta)}(1+i \cot (\alpha-\beta))^{\alpha+\beta} \\
& =\frac{(\sin (\alpha-\beta))^{2(\alpha+\beta)}}{\sin (\alpha-\beta)}[2 \pi(1+i \cot (\alpha-\beta))]^{\alpha+\beta} .
\end{aligned}
$$

Definition 1.1. A tempered distribution $\phi \in H^{s}(\mathbb{R})$ (the Sobolev space), $s \in \mathbb{R}$, if its fractional Fourier transform $\mathcal{F}_{\alpha, \beta} \phi$ corresponding to a locally integrable function $\left(\mathcal{F}_{\alpha, \beta}(\phi)\right)(t)$ over \mathbb{R} such that

$$
\begin{equation*}
\|\phi\|_{H^{s}}=\left(\int_{\mathbb{R}}\left|\left(1+|t|^{2}\right)^{s / 2} \mathcal{F}_{\alpha, \beta}(\phi)(t)\right|^{2} d t\right)^{1 / 2}<\infty . \tag{1.6}
\end{equation*}
$$

This space is complete with respect to the norm $\|\phi\|_{H^{s}}$.

2. Properties of fractional Fourier transform

First we recall the definition of the Schwartz space $S(\mathbb{R})$.

Definition 2.1. The space S, the so called space of smooth functions of rapid descent is defined as follows: ϕ is member of S if and only if it is complex valued C^{∞} function on \mathbb{R} and for every choice of b and c of non negative integers, it satisfies

$$
\begin{equation*}
\Gamma_{b, c}(\phi)=\sup _{x \in \mathbb{R}}\left|x^{b} D^{c} \phi(x)\right|<\infty \tag{2.1}
\end{equation*}
$$

Proposition 2.2. Let $K_{\alpha, \beta}(x, t)$ be the kernel of fractional Fourier transform and $\Delta_{x}^{r}=\left(\frac{d}{d x}-i x \cot (\alpha-\beta)\right)^{r}$. Then

$$
\Delta_{x}^{r} K_{\alpha, \beta}(x, t)=(-i t \csc (\alpha-\beta))^{r} K_{\alpha, \beta}(x, t),
$$

for all $r \in \mathbb{N}_{0}$.
Proof.

$$
\begin{aligned}
\frac{d}{d x}\left[K_{\alpha, \beta}(x, y)\right] & =C_{\alpha, \beta} \frac{d}{d x}\left[e^{i\left[\left(x^{2}+t^{2}\right) \cos (\alpha-\beta)\right]^{(\alpha+\beta)}-i x t \csc (\alpha-\beta)}\right] \\
& =K_{\alpha, \beta}(x, t) i(x \cot (\alpha-\beta)-t \csc (\alpha-\beta)) .
\end{aligned}
$$

So that

$$
\left(\frac{d}{d x}-i x \cot (\alpha-\beta)\right) K_{\alpha, \beta}(x, t)=(-i t \csc (\alpha-\beta)) K_{\alpha, \beta}(x, t) .
$$

Continuing in this way, we get

$$
\left(\frac{d}{d x}-i x \cot (\alpha-\beta)\right)^{r} K_{\alpha, \beta}(x, t)=(-i t \csc (\alpha-\beta))^{r} K_{\alpha, \beta}(x, t)
$$

Proposition 2.3. For all $\phi \in S(\mathbb{R})$, we have

$$
\int_{\mathbb{R}} \Delta_{x}^{r} K_{\alpha, \beta}(x, t) \phi(x) d x=\int_{\mathbb{R}} K_{\alpha, \beta}(x, t)\left(\Delta_{x}^{\prime}\right)^{r} \phi(x) d x
$$

for all $r \in \mathbb{N}_{0}$, where $\Delta_{x}^{\prime}=-\left(\frac{d}{d x}+i x \cot (\alpha-\beta)\right)$.
Proof. First we prove

$$
\int_{\mathbb{R}} \Delta_{x} K_{\alpha, \beta}(x, t) \phi(x) d x=\int_{\mathbb{R}} K_{\alpha, \beta}(x, t)\left(\Delta_{x}^{\prime}\right) \phi(x) d x
$$

Using integration by parts, we have

$$
\begin{aligned}
& \int_{\mathbb{R}}\left(\frac{d}{d x}-i x \cot (\alpha-\beta)\right) K_{\alpha, \beta}(x, t) \phi(x) d x \\
& =-\int_{\mathbb{R}} K_{\alpha, \beta}(x, t)\left(\frac{d}{d x}+i x \cot (\alpha-\beta)\right) \phi(x) d x
\end{aligned}
$$

Therefore,

$$
\int_{\mathbb{R}} \Delta_{x} K_{\alpha, \beta}(x, t) \phi(x) d x=\int_{\mathbb{R}} K_{\alpha, \beta}(x, t)\left(\Delta_{x}^{\prime}\right) \phi(x) d x
$$

In general, we have

$$
\int_{\mathbb{R}} \Delta_{x}^{r} K_{\alpha, \beta}(x, t) \phi(x) d x=\int_{\mathbb{R}} K_{\alpha, \beta}(x, t)\left(\Delta_{x}^{\prime}\right)^{r} \phi(x) d x
$$

Proposition 2.4. Let $\phi \in S$. Then

$$
\left(\mathcal{F}_{\alpha, \beta}\left(\Delta_{x}^{\prime}\right)^{r} \phi(x)\right)(t)=(-i t \csc (\alpha, \beta))^{r}\left(\mathcal{F}_{\alpha, \beta} \phi(x)\right)(t)
$$

for all $r \in \mathbb{N}_{0}$.
Proof. By using Proposition 2.2 and Proposition 2.3, we have

$$
\begin{aligned}
\left(\mathcal{F}_{\alpha, \beta}\left(\Delta_{x}^{\prime}\right)^{r} \phi(x)\right)(t) & =\int_{\mathbb{R}} K_{\alpha, \beta}(x, t)\left(\Delta_{x}^{\prime}\right)^{r} \phi(x) d x \\
& =\int_{\mathbb{R}} \Delta_{x}^{r} K_{\alpha, \beta}(x, t) \phi(x) d x \\
& =(i t \csc (\alpha-\beta))^{r} \int_{\mathbb{R}} K_{\alpha, \beta}(x, t) \phi(x) d x \\
& =(-i t \csc (\alpha, \beta))^{r}\left(\mathcal{F}_{\alpha, \beta} \phi(x)\right)(t) .
\end{aligned}
$$

3. Product of two generalized pseudo differential operators

Sobolev space $H^{s}(\mathbb{R})$ is defined by (1.6). The variant of this, denoted by $H^{s}(\mathbb{R} \times \mathbb{R})$, where $s \in \mathbb{R}$ defined by [2] as follows:

A tempered distribution $\phi \in S^{\prime}\left(\mathbb{R}^{2}\right)$ is said to belong to $H^{s}(\mathbb{R} \times \mathbb{R})$, if $\left(\mathcal{F}_{\alpha, \beta} \phi\right)(t, \eta)$ is locally integrable on \mathbb{R}^{2} and

$$
\left[\left(1+|t|^{2}\right)\left(1+|\eta|^{2}\right)\right]^{s / 2}\left(\mathcal{F}_{\alpha, \beta} \phi\right)(t, \eta) \in L^{2}\left(\mathbb{R}^{2}\right) .
$$

A norm in this space is defined as

$$
\begin{align*}
\|\phi\|_{H^{s}(\mathbb{R} \times \mathbb{R})}= & \left(\int_{\mathbb{R}} \int_{\mathbb{R}}\left|\left(1+|t|^{2}\right)^{s / 2}\left(1+|\eta|^{2}\right)^{s / 2}\left(\mathcal{F}_{\alpha, \beta} \phi\right)(t, \eta)\right|^{2} d t d \eta\right)^{1 / 2} \\
& <\infty, \quad \phi \in S^{\prime}(\mathbb{R} \times \mathbb{R}) . \tag{3.1}
\end{align*}
$$

Definition 3.1. The function $a(x, y): C^{\infty}(\mathbb{R} \times \mathbb{R}) \mapsto \mathbb{C}$ belongs to the class S^{m} if and only if for all $q, v, b \in \mathbb{N}_{0}$, there exist $D_{b, v, m}>0$ such that

$$
\begin{equation*}
(1+|x|)^{q}\left|D_{x}^{b} D_{y}^{v} a(x, y)\right| \leq D_{b, v, m}(1+|y|)^{m-v} \tag{3.2}
\end{equation*}
$$

Lemma 3.2. For any symbol $a \in S^{m}, m \in \mathbb{R}$ and $l>1 \in \mathbb{N}$, there exists a positive constant C_{m} such that

$$
\begin{equation*}
\left|\left(\mathcal{F}_{\alpha, \beta} a\right)(t, \eta)\right| \leq C_{m}(1+|\eta|)^{m}\left(1+t^{2} \csc ^{2}(\alpha-\beta)\right)^{-l / 2} \tag{3.3}
\end{equation*}
$$

Proof. We know that

$$
\left(\mathcal{F}_{\alpha, \beta} a\right)(t, \eta)=C_{\alpha, \beta} \int_{\mathbb{R}} e^{\left(i\left(x^{2}+t^{2}\right) \cot (\alpha-\beta)\right)^{(\alpha+\beta)}-i x t \csc (\alpha-\beta)} a(x, \eta) d x .
$$

So that

$$
\begin{equation*}
(1+i t \csc (\alpha-\beta))^{l}\left(\mathcal{F}_{\alpha, \beta} a\right)(t, \eta)=\int_{\mathbb{R}} K_{\alpha, \beta}(x, t)\left(1-\Delta_{x}^{\prime}\right)^{l} a(x, \eta) d x \tag{3.4}
\end{equation*}
$$

for all $\eta, t \in \mathbb{R}, l>1 \in \mathbb{N}$. Now

$$
\begin{aligned}
\left(1-\Delta_{x}^{\prime}\right)^{l} a(x, \eta) & =\sum_{r=0}^{l}\binom{l}{r}(-1)^{r}\left(\Delta_{x}^{\prime}\right)^{r} a(x, \eta) \\
& =\sum_{r=0}^{l}\binom{l}{r}(-1)^{r} \sum_{k=0}^{r} P(x, k) D_{x}^{k} a(x, \eta) \\
& =\sum_{r=0}^{l}\binom{l}{r}(-1)^{r} \sum_{k=0}^{r} \sum_{l_{1}=0}^{k} d_{l_{1}} x^{l_{1}} D_{x}^{k} a(x, \eta),
\end{aligned}
$$

where $P(x, k)$ is a polynomial of maximum degree r. Using (3.2) in above equation, we have

$$
\begin{equation*}
\left|\left(1-\Delta_{x}^{\prime}\right)^{l} a(x, \eta)\right| \leq \sum_{r=0}^{l}\binom{l}{r} \sum_{k=0}^{r} \sum_{l_{1}=0}^{k}\left|d_{l_{1}}\right| D_{k, m}(1+|\eta|)^{m}(1+|x|)^{-l} . \tag{3.5}
\end{equation*}
$$

Therefore by (3.4) and (3.5), we get

$$
\begin{aligned}
& |(1+i t \csc (\alpha-\beta))|^{l}\left|\left(\mathcal{F}_{\alpha, \beta} a\right)(t, \eta)\right| \\
& \leq\left|C_{\alpha, \beta}\right| \sum_{r=0}^{l}\binom{l}{r} \sum_{k=0}^{r} \sum_{l_{1}=0}^{k}\left|d_{l_{1}}\right| D_{k, m}(1+|\eta|)^{m} \times \int_{\mathbb{R}}(1+|x|)^{-l} d x .
\end{aligned}
$$

Since integral is convergent for large value of l, there exists a constant $C_{m}>0$ depending on $l, \alpha, \beta, k, r, m$ such that

$$
\left|\left(\mathcal{F}_{\alpha, \beta} a\right)(t, \eta)\right| \leq C_{m}(1+|\eta|)^{m}\left(1+t^{2} \csc ^{2}(\alpha-\beta)\right)^{-l / 2}
$$

A linear partial differential operator $A\left(x, \Delta_{x}^{\prime}\right)$ on \mathbb{R} is given by

$$
\begin{equation*}
A\left(x, \Delta_{x}^{\prime}\right)=\sum_{r=0}^{m} a_{r}(x)\left(\Delta_{x}^{\prime}\right)^{r}, \tag{3.6}
\end{equation*}
$$

where the coefficient $a_{r}(x)$ are functions defined on \mathbb{R} and $\Delta_{x}^{\prime}=-\left(\frac{d}{d x}+\right.$ $i x \cot (\alpha-\beta)$). If we replace $\left(\Delta_{x}^{\prime}\right)^{r}$ in (3.6) by monomial $(-i t \csc (\alpha-\beta))^{r}$ in \mathbb{R}, then we obtain the so called symbol

$$
\begin{equation*}
A(x, t)=\sum_{r=0}^{m} a_{r}(x)(-i t \csc (\alpha-\beta))^{r} . \tag{3.7}
\end{equation*}
$$

In order to get another representation of the operator $A\left(x, \Delta_{x}^{\prime}\right)$, let $\phi \in$ $S(\mathbb{R})$, by (1.3), (1.4) and Proposition 2.4, we have

$$
\begin{aligned}
\left(A\left(x, \Delta_{x}^{\prime}\right) \phi\right)(x) & =\sum_{r=0}^{m} a_{r}(x) \mathcal{F}_{\alpha, \beta}^{-1} \mathcal{F}_{\alpha, \beta}\left(\Delta_{x}^{\prime}\right)^{r} \phi(x) \\
& =\sum_{r=0}^{m} a_{r}(x) \mathcal{F}_{\alpha, \beta}^{-1}(-i t \csc (\alpha-\beta))^{r}\left(\mathcal{F}_{\alpha, \beta} \phi(x)\right)(t) \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} \overline{K_{\alpha, \beta}(x, t)} A(x, t)\left(\mathcal{F}_{\alpha, \beta} \phi\right)(t) d t
\end{aligned}
$$

where $\overline{K_{\alpha, \beta}(x, t)}$ is defined by (1.5). If we replace the symbol $A(x, t)$ by more general symbol $a(x, t)$ which is no longer polynomial in t, we get the generalized pseudo-differential operator $A_{a, \alpha, \beta}$ defined below.
Definition 3.3. Let $a(x, y)$ be a complex valued function belonging to the space $\mathbb{C}^{\infty}(\mathbb{R} \times \mathbb{R})$, and its derivatives satisfy certain growth conditions (3.2). Then the generalized pseudo-differential operator $A_{a, \alpha, \beta}$ associated with the symbol $a(x, y)$ is defined by

$$
\begin{equation*}
\left(A_{a, \alpha, \beta} \phi\right)=\frac{1}{2 \pi} \int_{\mathbb{R}} \overline{K_{\alpha, \beta}(x, y)} a(x, y)\left(\mathcal{F}_{\alpha, \beta} \phi\right)(y) d y \tag{3.8}
\end{equation*}
$$

where $\left(\mathcal{F}_{\alpha, \beta} \phi\right)(y)$ is defined in (1.3).
For pseudo-differential operator involving Fourier transform, we may refer to $[3,4]$.

Theorem 3.4. For any symbol $a(x, y) \in S^{m}$, the associated operator $\left(A_{a, \alpha, \beta} \phi\right)(x)$ can be represented by

$$
\begin{align*}
\left(A_{a, \alpha, \beta} \phi\right)(x)= & \left(\frac{C_{\alpha, \beta}^{\prime}}{2 \pi}\right)^{2} \int_{\mathbb{R}} \int_{\mathbb{R}}\left(e^{\left[-i\left(x^{2}+t^{2}+y^{2}+\eta^{2}\right) \cot (\alpha-\beta)\right]^{(\alpha+\beta)}}\right) \\
& \times e^{i(x t+y \eta)}\left(\mathcal{F}_{\alpha, \beta} a\right)(t, \eta)\left(\mathcal{F}_{\alpha, \beta} \phi\right)(\eta) d t d \eta \tag{3.9}
\end{align*}
$$

where $\phi \in S(R)$.
Proof. Proof can be completed by making use of (1.3) and (1.4) in (3.8).
Corollary 3.5. For any symbol $a \in S^{m}$ and $\phi \in S(\mathbb{R})$,

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta}\left[A_{a, \alpha, \beta} \phi\right](t, \eta)=\left(\mathcal{F}_{\alpha, \beta} a\right)(t, \eta)\left(\mathcal{F}_{\alpha, \beta} \phi\right)(\eta), \tag{3.10}
\end{equation*}
$$

where the fractional Fourier transform is taken with respect to all the variables x and y.

Definition 3.6. Let $\sigma(x, t) \in S^{m_{1}}$ and $\tau(y, t) \in S^{m_{2}}$. Then the product of two generalized pseudo-differential operators $B_{\tau, \alpha, \beta}$ and $A_{\sigma, \alpha, \beta}$ associated with symbol $\tau(y, t)$ and $\sigma(x, t)$ respectively is defined by

$$
\begin{equation*}
\left(B_{\tau, \alpha, \beta} A_{\sigma, \alpha, \beta} \phi\right)(x, y)=\frac{1}{2 \pi} \int_{\mathbb{R}} \overline{K_{\alpha, \beta}(x, t)} \tau(y, t) \mathcal{F}_{\alpha, \beta}\left[A_{\sigma, \alpha, \beta}\right](t, y) d t \tag{3.11}
\end{equation*}
$$

if the integral is convergent.
Theorem 3.7. Let $\sigma(x, t) \in S^{m_{1}}$ and $\tau(y, t) \in S^{m_{2}}$. Then the product of two pseudo-differential operators $B_{\tau, \alpha, \beta}$ and $A_{\sigma, \alpha, \beta}$ is again a generalized pseudodifferential operator whose symbol is in $S^{m_{1}+m_{2}}$.

Proof. Let $\phi \in S(\mathbb{R})$. Then from the Definition 3.6 and (3.10), we have

$$
\begin{align*}
& \left(B_{\tau, \alpha, \beta} A_{\sigma, \alpha, \beta} \phi\right)(x, y) \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} \overline{K_{\alpha, \beta}(x, t)} \tau(y, t)\left(\mathcal{F}_{\alpha, \beta} \sigma\right)(y, t)\left(\mathcal{F}_{\alpha, \beta} \phi\right)(t) d t \tag{3.12}
\end{align*}
$$

This shows that $\tau(y, t)\left(\mathcal{F}_{\alpha, \beta} \sigma\right)(y, t)$ is symbol of the product $B_{\tau, \alpha, \beta} A_{\sigma, \alpha, \beta}$.
Now, we have to show that this symbol is in $S^{m_{1}+m_{2}}$. For $a_{1}, b_{1} \in \mathbb{N}_{0}$, we have

$$
\begin{align*}
& \left|\left(D_{y}\right)^{a_{1}}\left(D_{t}\right)^{b_{1}} \tau(y, t)\left(\mathcal{F}_{\alpha, \beta} \sigma\right)(y, t)\right| \\
& \leq \sum_{a_{2}=0}^{a_{1}}\binom{a_{1}}{a_{2}} \sum_{b_{2}=0}^{b_{1}}\binom{b_{1}}{b_{2}}\left|\left(D_{y}\right)^{a_{1}-a_{2}}\left(D_{t}\right)^{b_{1}-b_{2}} \tau(y, t)\right| \\
& \quad \times\left|\left(D_{y}\right)^{a_{2}}\left(D_{t}\right)^{b_{2}}\left(\mathcal{F}_{\alpha, \beta} \sigma\right)(y, t)\right| . \tag{3.13}
\end{align*}
$$

Now,

$$
\begin{aligned}
& \left(D_{y}\right)^{a_{2}}\left(D_{t}\right)^{b_{2}}\left(\mathcal{F}_{\alpha, \beta} \sigma\right)(y, t) \\
& =C_{\alpha, \beta} \int_{\mathbb{R}} D_{y}^{a_{2}}\left(e^{\left[i\left(x^{2}+y^{2}\right) \cot (\alpha-\beta)\right](\alpha+\beta)-i x y \csc (\alpha-\beta)}\right) D_{t}^{b_{2}} \sigma(y, t) d x \\
& =C_{\alpha, \beta} \int_{\mathbb{R}} \sum_{a_{3}=0}^{a_{2}}\binom{a_{2}}{a_{3}} D_{y}^{a_{2}-a_{3}}\left(e^{\left[i\left(x^{2}+y^{2}\right) \cot (\alpha-\beta)\right](\alpha+\beta)}\right) \\
& \quad \times D_{y}^{a_{3}}\left(e^{-i x y \csc (\alpha-\beta)}\right) D_{t}^{b_{2}} \sigma(y, t) d x \\
& =C_{\alpha, \beta} \int_{\mathbb{R}} \sum_{a_{3}=0}^{a_{2}}\binom{a_{2}}{a_{3}} e^{\left[i\left(x^{2}+y^{2}\right) \cot (\alpha-\beta)\right](\alpha+\beta)} \\
& \quad \times P_{a_{2}-a_{3}}(y,(i \cot (\alpha-\beta))(\alpha+\beta)) \\
& \quad \times(-i x \csc (\alpha-\beta))^{a_{3}} e^{-i x \csc (\alpha-\beta)} D_{t}^{b_{2}} \sigma(y, t) d x \\
& =C_{\alpha, \beta} \sum_{a_{3}=0}^{a_{2}}\binom{a_{2}}{a_{3}} \sum_{s=0}^{a_{2}-a_{3}} a_{s} \cot (\alpha-\beta) y^{s}(-i \csc (\alpha-\beta))^{a_{3}} \\
& \quad \times \int_{\mathbb{R}} e^{\left[i\left(x^{2}+y^{2}\right) \cot (\alpha-\beta)\right](\alpha+\beta)-i x y \csc (\alpha-\beta)} x^{a_{3}} D_{t}^{b_{2}} \sigma(y, t) d x .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left|\left(D_{y}\right)^{a_{2}}\left(D_{t}\right)^{b_{2}}\left(\mathcal{F}_{\alpha, \beta} \sigma\right)(y, t)\right| \\
& \leq\left|C_{\alpha, \beta}\right| \sum_{a_{3}=0}^{a_{2}}\binom{a_{2}}{a_{3}} \sum_{s=0}^{a_{2}-a_{3}}\left|a_{s} \cot (\alpha-\beta)\right| \\
& \quad \times|y|^{s}|\csc (\alpha-\beta)|^{a_{3}} \int_{\mathbb{R}}\left|x^{a_{3}}\right|\left|D_{t}^{b_{2}} \sigma(y, t)\right| d x \\
& \leq\left|C_{\alpha, \beta}\right| \sum_{a_{3}=0}^{a_{2}}\binom{a_{2}}{a_{3}} \sum_{s=0}^{a_{2}-a_{3}}\left|a_{s} \cot (\alpha-\beta)\right| \\
& \quad \times(1+|y|)^{s}|\csc (\alpha-\beta)|^{a_{3}} \int_{\mathbb{R}}(1+|x|)^{a_{3}}\left|D_{t}^{b_{2}} \sigma(y, t)\right| d x \\
& \leq D_{b_{3}, m}\left|C_{\alpha, \beta}\right| \sum_{a_{3}=0}^{a_{2}}\binom{a_{2}}{a_{3}} \sum_{s=0}^{a_{2}-a_{3}}\left|a_{s} \cot (\alpha-\beta)\right| \\
& \quad \times(1+|y|)^{s}|\csc (\alpha-\beta)|^{a_{3}}(1+|t|)^{m_{1}-b_{2}} \int_{\mathbb{R}}(1+|x|)^{a_{3}-q} d x .
\end{aligned}
$$

The x-integral being convergent for $q>a_{3}+1$, therefore

$$
\begin{equation*}
\left|\left(D_{y}\right)^{a_{2}}\left(D_{t}\right)^{b_{2}}\left(\mathcal{F}_{\alpha, \beta} \sigma\right)(y, t)\right| \leq L(1+|y|)^{s}(1+|t|)^{m_{1}-b_{2}} \tag{3.14}
\end{equation*}
$$

where L is a positive constant depending on $\alpha-\beta, a_{2}, a_{3}, s, b_{2}, m$ and q.

By (3.13), (3.14) and (3.2), we have

$$
\begin{aligned}
& \left|\left(D_{y}\right)^{a_{2}}\left(D_{t}\right)^{b_{2}}\left(\mathcal{F}_{\alpha, \beta} \sigma\right)(y, t)\right| \\
& \leq L \sum_{a_{2}=0}^{a_{1}}\binom{a_{1}}{a_{2}} \sum_{b_{2}=0}^{b_{1}}\binom{b_{1}}{b_{2}} C_{a_{1}-a_{2}, b_{1}-b_{2}, m_{2}, s}(1+|t|)^{m_{1}+m_{2}-b_{1}} \\
& \leq L_{1}(1+|t|)^{m_{1}+m_{2}-b_{1}}
\end{aligned}
$$

where L_{1} is a positive constant depending on $a_{1}, a_{2}, b_{1}, b_{2}, m_{2}, s$ and L. Therefore the symbol of the product $B_{\tau, \alpha, \beta} A_{\sigma, \alpha, \beta}$ is in $S^{m_{1}+m_{2}}$.
Theorem 3.8. Let $\sigma(x, t) \in S^{m_{1}}$ and $\tau(y, t) \in S^{m_{2}}$. Then for certain $C_{1}>$ $0, m_{1}, m_{2} \in \mathbb{R}_{+}$,

$$
\left\|\left(B_{\tau, \alpha, \beta} A_{\sigma, \alpha, \beta} \phi\right)(x, y)\right\|_{H^{s}(\mathbb{R} \times \mathbb{R})}^{2} \leq C_{1}\|\phi\|_{H^{s+m_{1}+m_{2}(\mathbb{R})}}^{2}
$$

for all $\phi \in S(\mathbb{R})$.
Proof. From Definition 3.6 and (3.12), it follows that $\left(B_{\tau, \alpha, \beta} A_{\sigma, \alpha, \beta} \phi\right)(x, y)$ has the fractional Fourier transform equal to $\tau(y, t)\left(\mathcal{F}_{\alpha, \beta} \sigma\right)(y, t)$. Therefore,

$$
\begin{aligned}
& \left\|\left(B_{\tau, \alpha, \beta} A_{\sigma, \alpha, \beta} \phi\right)(x, y)\right\|_{H^{s}(\mathbb{R} \times \mathbb{R})}^{2} \\
& =\left\|\left(1+|t|^{2}\right)^{s / 2}\left(1+|y|^{2}\right)^{s / 2} \mathcal{F}_{\alpha, \beta}\left(B_{\tau, \alpha, \beta} A_{\sigma, \alpha, \beta}\right)(t, y)\right\|_{L^{2}(\mathbb{R} \times \mathbb{R})}^{2} \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} \mid\left(1+|t|^{2}\right)^{s / 2}\left(1+|y|^{2}\right)^{s / 2} \tau(y, t) \\
& \quad \times\left.\left(\mathcal{F}_{\alpha, \beta} \sigma\right)(y, t)\left(\mathcal{F}_{\alpha, \beta} \phi\right)(t)\right|^{2} d y d t .
\end{aligned}
$$

Since from (3.2)

$$
|\tau(y, t)| \leq C_{m_{2}}(1+|t|)^{m_{2}}\left(1+|y|^{2}\right)^{-l},
$$

and from (3.3)

$$
\left|\left(\mathcal{F}_{\alpha, \beta} \sigma\right)(y, t)\right| \leq C_{m_{1}}(1+|t|)^{m_{1}}\left(1+y^{2} \csc ^{2}(\alpha-\beta)\right)^{-l / 2}
$$

We know that

$$
(1+|t|)^{m} \leq\left\{\begin{array}{cl}
2^{m / 2}\left(1+|t|^{2}\right)^{m / 2} & \text { if } \quad m \geq 0, \\
\left(1+|t|^{2}\right)^{m / 2} & \text { if } \quad m<0 .
\end{array}\right.
$$

Therefore,

$$
(1+|t|)^{m} \leq \max \left(1,2^{m / 2}\right)\left(1+|t|^{2}\right)^{m / 2}=C_{m}\left(1+|t|^{2}\right)^{m / 2}
$$

where $C_{m}=\max \left(1,2^{m / 2}\right)$. Thus

$$
\begin{aligned}
& \left\|\left(B_{\tau, \alpha, \beta} A_{\sigma, \alpha, \beta} \phi\right)(x, y)\right\|_{H^{s}(\mathbb{R} \times \mathbb{R})}^{2} \\
& \leq \\
& C_{m_{1}} C_{m_{2}} \int_{\mathbb{R}}\left(1+|y|^{2}\right)^{s-2 l}\left(1+y^{2} \csc ^{2}(\alpha-\beta)\right)^{-l} d y \\
& \quad \times \int_{\mathbb{R}}\left|C_{m}^{2}\left(1+|t|^{2}\right)^{\frac{s+m_{1}+m_{2}}{2}}\left(\mathcal{F}_{\alpha, \beta} \phi\right)(t)\right|^{2} d t .
\end{aligned}
$$

Now we have to show that the first integral is convergent. Consider

$$
\begin{aligned}
& \int_{\mathbb{R}}\left(1+|y|^{2}\right)^{s-2 l}\left(1+y^{2} \csc ^{2}(\alpha-\beta)\right)^{-l} d y \\
& =\int_{|y| \leq 1}\left(1+|y|^{2}\right)^{s-2 l}\left(1+y^{2} \csc ^{2}(\alpha-\beta)\right)^{-l} d y \\
& \quad+\int_{|y|>1}\left(1+|y|^{2}\right)^{s-2 l}\left(1+y^{2} \csc ^{2}(\alpha-\beta)\right)^{-l} d y \\
& =I_{1}+I_{2},
\end{aligned}
$$

where I_{1} and I_{2} denotes first and second integrals respectively. Since I_{1} is bounded, we have to show the convergent for I_{2}.

$$
I_{2}=\int_{|y|>1}\left(1+|y|^{2}\right)^{s-2 l}\left(1+y^{2} \csc ^{2}(\alpha-\beta)\right)^{-l} d y
$$

If $s-2 l>0$, then

$$
\begin{aligned}
I_{2} & \leq \int_{|y|>1} 2^{s-2 l}|y|^{2 s-4 l}\left(\sin ^{2}(\alpha-\beta)+y^{2}\right)^{-l}(\csc (\alpha-\beta))^{-2 l} d y \\
& \leq \int_{|y|>1} 2^{s-2 l}|y|^{2 s-4 l}|y|^{-2 l}(\csc (\alpha-\beta))^{-2 l} d y \\
& =2^{s-2 l}(\csc (\alpha-\beta))^{-2 l} \int_{|y|>1}|y|^{2 s-6 l} d y \\
& <\infty .
\end{aligned}
$$

The y-integral is convergent by choosing $l>\frac{1+2 s}{6}$.
Now, for $s-2 l<0$, let $s-2 l=-p$,

$$
\begin{aligned}
I_{2} & \leq \int_{|y|>1} \frac{\sin ^{2 l}(\alpha-\beta)}{\left(1+|y|^{2}\right)^{p}\left(\sin ^{2}(\alpha-\beta)+y^{2}\right)^{l}} d y \\
& \leq \int_{|y|>1} \frac{1}{|y|^{2 p} y^{2 l}} d y \\
& \leq \int_{|y|>1} y^{-(2 p+2 l)} d y<\infty .
\end{aligned}
$$

The above integral is convergent by choosing $2 p+2 l>1$. Therefore,

$$
\begin{aligned}
& \left\|\left(B_{\tau, \alpha, \beta} A_{\sigma, \alpha, \beta} \phi\right)(x, y)\right\|_{H^{s}(\mathbb{R} \times \mathbb{R})}^{2} \\
& \leq C_{1} \int_{\mathbb{R}}\left|\left(1+|t|^{2}\right)^{\frac{s+m_{1}+m_{2}}{2}}\left(\mathcal{F}_{\alpha, \beta} \phi\right)(t)\right|^{2} d t \\
& \leq C_{1}\|\phi\|_{H^{s+m_{1}+m_{2}(\mathbb{R})}}^{2},
\end{aligned}
$$

where C_{1} is a positive constant. This completes the proof.

References

[1] L. Almeida, The fractional Fourier transform and time frequency representations, IEEE Trans. Signal Process, 42(11) (1994), 3084-3091.
[2] R.S. Pathak and A. Prasad, A generalized pseudo-differential operator on Gelfand-Shilov space and Sobolev space, Indian J. Pure Appl. Math., 37(4) (2006), 223-235.
[3] M.W. Wong, An Introduction to pseudo-differential operators, 2nd edition, World Scientific, Sinfapore, (1999).
[4] S. Zaidman, Distributions and pseudo-differential operators, Longman, Essex, England (1991).
[5] A.I. Zayed, A convolution and product theorem for the fractional Fourier transform, IEEE Signal Process. Lett., 5(4) (1998), 101-103.
[6] A.I. Zayed, Fractional Fourier transform of generalized functions, Integral transforms Spec. Funct., 7(3-4) (1998), 299-312.

[^0]: ${ }^{0}$ Received August 3, 2020. Revised October 4, 2020. Accepted February 5, 2021.
 ${ }^{0} 2010$ Mathematics Subject Classification: 47G30, 46F12.
 ${ }^{0}$ Keywords: Generalized pseudo-differential operator, Fourier transform, fractional Fourier transform.
 ${ }^{0}$ Corresponding author: B .B. Waphare(balasahebwaphare@gmail.com).

