• Title/Summary/Keyword: functional compounds

Search Result 1,187, Processing Time 0.021 seconds

Physicochemical and Functional Characterization of Blue-Shelled Eggs in Korea

  • Sujiwo, Joko;Kim, Dongwook;Yoon, Ji-Yeol;Kim, Hanna;Kim, Jung-Soo;Lee, Sung-Ki;Jang, Aera
    • Food Science of Animal Resources
    • /
    • v.37 no.2
    • /
    • pp.181-190
    • /
    • 2017
  • The aim of this study was to compare the quality and physicochemical characteristics of blue-shelled eggs (BE) and conventional eggs (CE). Proximate composition, quality, pH value, shell color, collagen content, fatty acid composition, total cholesterol, ${\alpha}$-glucosidase inhibition activity, and antioxidation activity were determined. The proximate composition, general qualities, and pH values of CE and BE showed no significant differences, except in moisture composition, weight, and shell thickness. Moisture content and weight of BE were significantly lower than those of CE. However, shell thickness and weight of BE were higher than those of CE (p<0.05). Lightness of BE was significantly higher than that of CE (85.20 vs. 58.80), while redness ($a^*$) and yellowness ($b^*$) of BE were lower than those of CE ($a^*$: -4.75 vs. 14.20; $b*$: 10.45 vs. 30.63). The fatty acid [C18:1n7 (cis-vaccenic acid) and C18:3n6 (gamma-linolenic acid)] contents of BE were significantly higher than those of CE. The total cholesterol contents of BE and CE were similar. DPPH radical scavenging activity of BE was significantly higher than that of CE (40.78 vs. 35.35). Interestingly, ${\alpha}$-glucosidase inhibition activity of whole egg and egg yolk in BE (19.27 and 36.06) was significantly higher than that of whole egg and egg yolk in CE (13.95 and 32.46). This result indicated that BE could potentially be used as a functional food material. Further studies are required to evaluate the specific compounds that affect functional activity.

Application of Functional Microbial Strains Isolated from Traditional Rice Wine in Korea (막걸리 유래 미생물의 활용을 위한 연구 동향)

  • Lee, Youngsuk;Seol, Jeongman;Jeong, Deokyeol;Kim, Soo Rin
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.229-235
    • /
    • 2016
  • Korea has a long history of brewing traditional rice wine using a authentic starter culture called nuruk, which contains natural microbial flora. Because rice wine is consumed fresh without filtration, its viable cells contribute to the biological activities of the wine. In numerous studies, microbial strains isolated from rice wine have been screened for their functionalities, which were mainly probiotic properties and antimicrobial activities. Indeed, some lactic acid bacteria (LAB) were confirmed to have strong probiotic activities as well as other health-promoting effects. Moreover, some of the isolated probiotic strains produced functional compounds, such as exopolysaccharides and γ-aminobutyric acid. For antimicrobial activities, some LAB and yeast strains were identified to produce bacteriocins and killer toxins, respectively, with significantly broad spectrum of antimicrobial activity. These functional strains originating from traditional rice wine and their metabolites can be used directly for the production of value-added food products.

The Relation between Fertilization Practices and Functional Metabolites of Crops: A Review

  • Lim, Jung-Eun;Cho, Min-Ji;Yun, Hye-Jin;Ha, Sang-Keun;Lee, Deog-Bae;Sung, Jwa-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.168-180
    • /
    • 2016
  • Various researches on the effects of fertilization levels on functional metabolites in crop have been conducted. This review summarizes the previous studies on the relation between fertilization supply and accumulation of metabolites (phenolics, carotenoids, ascorbic acid and glucosinolates) which function as antioxidants in crop. The accumulation of phenolic compounds is related to the activation of phenylalanine ammonia lyase (PAL) in phenylpropanoid pathway. Most of the previous studies discuss that low nitrogen (N) supply activates PAL, thereby increasing the synthesis of phenolics. Similarly, high N supply leads to a decrease in ascorbic acid because of the shading effect derived from the accelerated vegetative growth under high N level. Unlike the phenolics and ascorbic acid, carotenoids are accumulated with increasing N supply. In this regard, the previous studies explain that N is a main element closely associated with formation of key enzyme for the synthesis of carotenoids. Glucosinolates are generally increased under decreasing N supply and increasing S supply. Although the previous studies show similar trends about the accumulation of metabolites by nutrient level, they also suggest that many other factors including crop types, cultivars, cultural environment (water, temperature, light, etc.) influence the accumulation of functional metabolites in crop.

Nanotechnology in Meat Processing and Packaging: Potential Applications - A Review

  • Ramachandraiah, Karna;Han, Sung Gu;Chin, Koo Bok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.290-302
    • /
    • 2015
  • Growing demand for sustainable production, increasing competition and consideration of health concerns have led the meat industries on a path to innovation. Meat industries across the world are focusing on the development of novel meat products and processes to meet consumer demand. Hence, a process innovation, like nanotechnology, can have a significant impact on the meat processing industry through the development of not only novel functional meat products, but also novel packaging for the products. The potential benefits of utilizing nanomaterials in food are improved bioavailability, antimicrobial effects, enhanced sensory acceptance and targeted delivery of bioactive compounds. However, challenges exist in the application of nanomaterials due to knowledge gaps in the production of ingredients such as nanopowders, stability of delivery systems in meat products and health risks caused by the same properties which also offer the benefits. For the success of nanotechnology in meat products, challenges in public acceptance, economics and the regulation of food processed with nanomaterials which may have the potential to persist, accumulate and lead to toxicity need to be addressed. So far, the most promising area for nanotechnology application seems to be in meat packaging, but the long term effects on human health and environment due to migration of the nanomaterials from the packaging needs to be studied further. The future of nanotechnology in meat products depends on the roles played by governments, regulatory agencies and manufacturers in addressing the challenges related to the application of nanomaterials in food.

Fourier Transform Ion Cyclotron Resonance (FT-ICR) MASS Spectrophotometric Analysis of Flower Petal from Paeonia lactiflora cv. ‘Red Charm’ and Evaluation of its Functional Activity (작약 레드참 꽃잎의 이온화원-푸리에 변환 질량분석과 기능성 연구)

  • Kim, June Hyun;Choi, Yong Bock;Lee, Ha Jung;Kim, Yong Hee;Kim, Jun Huan;Sim, Jung Min;Sohn, Young-Sun
    • Korean Journal of Plant Resources
    • /
    • v.29 no.5
    • /
    • pp.588-597
    • /
    • 2016
  • Little attention has been paid to the functional aspect of the flower petal of Paeonia lactiflora, compared to that of its root. To determine the components of flower petal of Paeonia lactiflora, we conducted the Fourier transform ion cyclotron resonance (FT-ICR) MASS spectrophotometric analysis. We detected the 24 different types of ingredients from the 70% ethanol extracts of flower petal of peonia lactiflora cv. ‘Red Charm’. The main compounds were quercetin glucopyranosides, methyl gallate, paonioflolol and kaemperol glucopyranosides. We further tested its functional activity. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of the extracts was 87.9-90.4% at 0.1mg/ml. This result showed that these flower extracts have approximately 5-fold stronger antioxidant potential than a previous report with root extracts (Bang et al. 1999). The result of tyrosinase inhibition assay of Paeonia lactflora extract was almost similar to that of arbutin except significantly higher effect in the coral sunset extract at 0.1% concentration. Hyaluronidase inhibition assay showed 76.5% inhibition at 5% concentration of this flower extract, indicating that Peaonia lactiflora flower extracts have the major anti-inflammatory, anti-oxidant and brightening effects. Taken together, these results suggest these three Paeonia lactiflora species extracts might provide the basis to develop a new natural brightening agent.

Anthocyanin Profiling and Radical Scavenging Activity of Selected Pigmented Rice Varieties

  • Ali, Hiba A.;Cho, Il-Kyu;Kim, Sun-Ju;Kim, Se-Na;Kim, So-Young;Cho, Young-Sook;Baek, Hyung-Jin;Kim, Jung-Bong
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.111-117
    • /
    • 2011
  • BACKGROUND: Anthocyanins have been recognized as health-enhancing substances due to their antioxidant activity, anti-inflammatory, anticancer, and hypoglycemic effects. The objective was to identify anthocyanins-rich rice grains for the development of functional foods and/or functional food colorants METHODS AND RESULTS: Rice grains of one black and three red-hulled rice varieties were extracted with acidified 80% aqueous methanol. The antioxidant activity of the methanolic extracts was screened on TLC plates and in an in vitro assay using DPPH (1, 1-diphenyl-2-picrylhydrazyl) as a free radical source. Red-hulled rice varieties exhibited higher antioxidant activity (88%, 1 mg/mL) than black rice (67%, 1 mg/mL). Among the red-hulled varieties tested, rice variety SSALBYEO54 (901452) was the most active (72%, 0.5 mg/mL). Rice extracted anthocyanin compounds were analyzed by HPLC-DAD-FLD and LC-MS/MS. Red-hulled varieties comprised cyanidin-3-glucoside in addition to ferulic acid esters, apigenin and kaempferol glycosides. CONCLUSION(s): Anthocyanins identified in the black rice variety were cyanidin-7-O-galactoside, cyanidin-3-Oglucoside, cyanidin-3'-O-glucoside, cyanidin-5-O-glucoside, cyanidin-3, 7-O-diglucoside, cyanidin-3, 5-O-diglucoside and peonidin-4'-O-glucoside. The results of this study show that the black rice (IT212512) and red-hulled rice variety SSALBYEO54 (901452) contain notable antioxidant activity for potential use in nutraceutical or functional food formulations.

Photo-protective and Anti-melanogenic Effect from Phenolic Compound of Olive Leaf (Olea europaea L. var. Kalamata) Extracts on the Immortalized Human Keratinocytes and B16F1 Melanoma Cells

  • Ha, Ju-Yeon;Choi, Hyun-Kyung;Oh, Myoung-Jin;Choi, Hae-Yeon;Park, Chang-Seo;Shin, Han-Seung
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1193-1198
    • /
    • 2009
  • Ethylacetate and butanol fractions of leaf extracts (OLE) showed the higher contents of total phenolic compounds than hexane and water fractions. Oleuropein contents were $4.21{\pm}0.57,\;3.92{\pm}0.43,\;0.32{\pm}0.03,\;5.76{\pm}0.32$, and $32.47{\pm}0.25mg$/100g for ethanol extract, and hexane, chloroform, ethyl acetate, and butanol fraction, respectively. Treatment of ultraviolet-B (UVB) irradiated cells with 3 OLEs prepared by using ethylacetate and butanol at concentrations 0.001, 0.005, and 0.01% respectively showed significant recovery of cell viabilities. Treatment of dexametason 1 mM reduced tumor necrotic factor (TNF)-${\alpha}$ secretion by about 40%. UVB irradiated immortalized human keratinocytes (HaCaT) cells were treated with 3 different OLEs at the same concentrations. Ethylacetate fraction showed the strongest inhibition activity with respect of reduction of the elevated (TNF)-${\alpha}$. Cytotoxicity of OLEs on the B16-F1 cells was evaluated through thiazolyl blue tetrazolium bromide (MTT) assay. Ethylacetate fraction has no cytotoxicity in the range of 0.005-0.01%. A slight cytotoxicity was observed at the concentration of 0.1% butanol fraction of OLE that caused 10% decrease in cell viability.

Transcriptome profiling and identification of functional genes involved in H2S response in grapevine tissue cultured plantlets

  • Ma, Qian;Yang, Jingli
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1287-1300
    • /
    • 2018
  • Hydrogen sulfide ($H_2S$), a small bioactive gas, has been proved functioning in plant growth and development as well as alleviation of abiotic stresses, which including promoting seed germination, accelerating embryonic root growth, regulating flower senescence, inducing stomatal closure, and defending drought, heat, heavy metals and osmotic stresses etc. However, the molecular functioning mechanism of $H_2S$ was still unclear. The primary objective of this research was to analyze the transcriptional differences and functional genes involved in the $H_2S$ responses. In details, 4-week-old plantlets in tissue culture of grapevine (Vitis vinifera L.) cultivar 'Zuoyouhong' were sprayed with 0.1 mM NaHS for 12 h, and then transcriptome sequencing and qRT-PCR analysis were used to study the transcriptional differences and functional genes involved in the $H_2S$ responses. Our results indicated that 650 genes were differentially expressed after $H_2S$ treatment, in which 224 genes were up-regulated and 426 genes were down-regulated. The GO enrichment analysis and KEGG enrichment analysis results indicated that the up-regulated genes after $H_2S$ treatment focused on carbon metabolism, biosynthesis of amino acids, and glycolysis/gluconeogenesis, and the down-regulated genes were mainly in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. Analyzing the transcription factor coding genes in details, it was indicated that 10 AP2/EREBPs, 5 NACs, 3 WRKYs, 3 MYBs, and 2 bHLHs etc. transcription factor coding genes were up-regulated, while 4 MYBs, 3 OFPs, 3 bHLHs, 2 AP2/EREBPs, 2 HBs etc. transcription factor coding genes were down-regulated. Taken together, $H_2S$ increased the productions in secondary metabolites and a variety of defensive compounds to improve plant development and abiotic resistance, and extend fruits postharvest shelf life by regulating the expression of AP2/EREBPs, WRKYs, MYBs, CABs, GRIP22, FERRITINs, TPSs, UGTs, and GHs etc.

Physical, chemical composition and umami compound of dried immature and mature roes of skipjack tuna (Katsuwonus pelamis)

  • Phetchthumrongchai, Thithi;Chuchird, Niti;Roytrakul, Sittiruk;Chintong, Sutasinee;Klaypradit, Wanwimol
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.7
    • /
    • pp.390-402
    • /
    • 2022
  • In this study we investigate physical and chemical characteristics of immature and mature skipjack tuna (Katsuwonus pelamis) roes in fresh and dried forms. Fresh roes were studied for histological structure and also dried by three methods: hot air drying (HD), vacuum drying (VD) and freeze drying (FD). The obtained roe powders were analysed for proximate composition, color value, fatty acid composition, amino acid profile, equivalent umami concentration (EUC) and protein pattern. Unyolked oocytes were more common in immature roes, while fully yolked oocytes were more common in mature roes. All dried tuna roes contained high content of protein and lipid (69.31%-70.55% and 11.14%-16.02%, respectively). The powders obtained by FD provided the highest lightness value (L*). The main fatty acid found in all roe powders was docosahexaenoic acid (DHA) (23.49%-27.02%). Glutamic acid, leucine, and aspartic acid were the three most abundant amino acids found in the powders (13.58-14.61, 8.06-8.42, and 7.81-8.39 g/100 g of protein, respectively). The mature roe powder obtained from HD provided the highest EUC value (73.09 g monosodium glutamate/100 g of samples). The protein band at molecular weight of 97 kDa (vitelline) represented the major protein. Therefore, dried tuna roe could be a functional ingredient source of protein and lipid rich in DHA and it also has potential to be used as taste enhancer with umami compound.

Structure-Activity Relationship and Functional Evaluation of Cannabinoid Type-1 Receptor

  • Shujie Wang;Xinru Tian;Suresh Paudel;Sungho Ghil;Choon-Gon Jang;Kyeong-Man Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.4
    • /
    • pp.442-450
    • /
    • 2024
  • The type-1 cannabinoid receptor (CB1R) is a potential therapeutic target in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Owing to their structural diversity, it is not easy to derive general structure-activity relationships (SARs) for CB1R ligands. In this study, CB1R ligands were classified into six structural families, and the corresponding SAR was determined for their affinities for CB1R. In addition, we determined their functional activities for the activation of extracellular signal-regulated kinases (ERKs). Among derivatives of indol-3-yl-methanone, the highest ligand affinity was observed when a pentyl and a naphthalenyl group were attached to the N1 position of the indole ring and the carbon site of the methanone moiety, respectively. In the case of adamantane indazole-3-carboxamide derivatives, the presence of fluorine in the pentyl group, the substituent at the N1 position of the indazole ring, strongly increased the affinity for CB1R. For (naphthalen-1-yl) methanone derivatives, the presence of 4-alkoxynaphthalene in the methanone moiety was more beneficial for the affinity to CB1R than that of a heterocyclic ring. The functional activities of the tested compounds, evaluated through ERK assay, were correlated with their affinity for CB1R, suggesting their agonistic nature. In conclusion, this study provides valuable insight for designing novel ligands for CB1R, which can be used to control psychiatric disorders and drug abuse.